Method for fast lipid reconstruction and removal processing in H-1 MRSI of the brain
Purpose: To develop a new rapid spatial filtering method for lipid removal, fast lipid reconstruction and removal processing (FLIP), which selectively isolates and removes interfering lipid signals from outside the brain in a full-FOV 2D MRSI and whole-brain 3D echo planar spectroscopic imaging (EPS...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2021-12, Vol.86 (6), p.2930-2944 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: To develop a new rapid spatial filtering method for lipid removal, fast lipid reconstruction and removal processing (FLIP), which selectively isolates and removes interfering lipid signals from outside the brain in a full-FOV 2D MRSI and whole-brain 3D echo planar spectroscopic imaging (EPSI).
Theory and Methods: FLIP uses regularized least-squares regression based on spatial prior information from MRI to selectively remove lipid signals originating from the scalp and measure the brain metabolite signals with minimum cross contamination. FLIP is a noniterative approach, thus allowing a rapid processing speed, and uses only spatial information without any spectral priors. The performance of FLIP was compared with the Papoulis-Gerchberg algorithm (PGA), Hankel singular value decomposition (HSVD), and fast image reconstruction with L2 regularization (L2).
Results: FLIP in both 2D and 3D MRSI resulted in consistent metabolite quantification in a greater number of voxels with less concentration variation than other algorithms, demonstrating effective and robust lipid-removal performance. The percentage of voxels that met quality criteria with FLIP, PGA, HSVD, and L2 processing were 90%, 57%, 29%, and 42% in 2D MRSI, and 80%, 75%, 76%, and 74% in 3D EPSI, respectively. The quantification results of full-FOV MRSI using FLIP were comparable to those of volume-localized MRSI, while allowing significantly increased spatial coverage. FLIP performed the fastest in 2D MRSI.
Conclusion: FLIP is a new lipid-removal algorithm that promises fast and effective lipid removal with improved volume coverage in MRSI. |
---|---|
ISSN: | 0740-3194 1522-2594 |
DOI: | 10.1002/mrm.28949 |