Dual role of miR-1 in the development and function of sinoatrial cells
miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpr...
Gespeichert in:
Veröffentlicht in: | Journal of molecular and cellular cardiology 2021-08, Vol.157, p.104-112 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 104 |
container_title | Journal of molecular and cellular cardiology |
container_volume | 157 |
creator | Benzoni, P. Nava, L. Giannetti, F. Guerini, G. Gualdoni, A. Bazzini, C. Milanesi, R. Bucchi, A. Baruscotti, M. Barbuti, A. |
description | miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpression in the development and function of sinoatrial (SAN) cells using murine embryonic stem cells (mESC).
We generated mESCs either overexpressing miR-1 and EGFP (miR1OE) or EGFP only (EM). SAN-like cells were selected from differentiating mESC using the CD166 marker. Gene expression and electrophysiological analysis were carried out on both early mES-derived cardiac progenitors and SAN-like cells and on beating neonatal rat ventricular cardiomyocytes (NRVC) over-expressing miR-1.
miR1OE cells increased significantly the proportion of CD166+ SAN precursors compared to EM cells (23% vs 12%) and the levels of the transcription factors TBX5 and TBX18, both involved in SAN development. miR1OE SAN-like cells were bradycardic (1,3 vs 2 Hz) compared to EM cells. In agreement with data on native SAN cells, EM SAN-like cardiomyocytes show two populations of cells expressing either slow- or fast-activating If currents; miR1OE SAN-like cells instead have only fast-activating If with a significantly reduced conductance. Western Blot and immunofluorescence analysis showed a reduced HCN4 signal in miR-1OE vs EM CD166+ precursors. Together these data point out to a specific down-regulation of the slow-activating HCN4 subunit by miR-1. Importantly, the rate and If alterations were independent of the developmental effects of miR-1, being similar in NRVC transiently overexpressing miR-1.
In conclusion, we demonstrated a dual role of miR-1, during development it controls the proper development of sinoatrial-precursor, while in mature SAN-like cells it modulates the HCN4 pacemaker channel translation and thus the beating rate.
[Display omitted]
•miR-1 increase SAN-specific transcription factors and the number of SAN precursors during sinus node development•Silencing miR-1 impair spontaneous contraction in mESC-derived embryoid bodies.•miR-1 slows the beating rate of pacemaker cells by inhibiting HCN4 translation and thus reducing the If current•miR-1 Overexpression accelerate If activation kinetics and decreases cAMP response compatibly with a decreased HCN4/HCN1 |
doi_str_mv | 10.1016/j.yjmcc.2021.05.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000677734200005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022282821000894</els_id><sourcerecordid>2524881119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8818e90dcac9422821601d2e5e8c54f959afeec62272bc2660e7f2e62323cf593</originalsourceid><addsrcrecordid>eNqNkMFu1DAQQC0EotvCFyChHJFQwngcO86BA1poqVQJqSpnK-tMhFeJvdhJq_49Drv0iHqyD-95xo-xdxwqDlx92leP-8naCgF5BbIC4C_YhkMrSy11_ZJtABBL1KjP2HlKewBoayFeszMhWlVjozbs8uvSjUUMIxVhKCZ3W_LC-WL-RUVP9zSGw0R-LjrfF8Pi7eyCX8HkfOjm6LJraRzTG_Zq6MZEb0_nBft5-e1u-728-XF1vf1yU9oa6rnUmmtqobedbWvMm3EFvEeSpK2sh1a23UBkFWKDO4tKATUDkkKBwg6yFRfsw_HdQwy_F0qzmVxaN-g8hSUZlFjnIZyvqDiiNoaUIg3mEN3UxUfDwawBzd78DWjWgAakyQGz9f40YNlN1D85_4pl4OMReKBdGJJ15C09YTmxappG1JhvIDOtn09v3dytgbdh8XNWPx9Vyj3vHUVz0nsXyc6mD-6_P_kD7LihlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524881119</pqid></control><display><type>article</type><title>Dual role of miR-1 in the development and function of sinoatrial cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Benzoni, P. ; Nava, L. ; Giannetti, F. ; Guerini, G. ; Gualdoni, A. ; Bazzini, C. ; Milanesi, R. ; Bucchi, A. ; Baruscotti, M. ; Barbuti, A.</creator><creatorcontrib>Benzoni, P. ; Nava, L. ; Giannetti, F. ; Guerini, G. ; Gualdoni, A. ; Bazzini, C. ; Milanesi, R. ; Bucchi, A. ; Baruscotti, M. ; Barbuti, A.</creatorcontrib><description>miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpression in the development and function of sinoatrial (SAN) cells using murine embryonic stem cells (mESC).
We generated mESCs either overexpressing miR-1 and EGFP (miR1OE) or EGFP only (EM). SAN-like cells were selected from differentiating mESC using the CD166 marker. Gene expression and electrophysiological analysis were carried out on both early mES-derived cardiac progenitors and SAN-like cells and on beating neonatal rat ventricular cardiomyocytes (NRVC) over-expressing miR-1.
miR1OE cells increased significantly the proportion of CD166+ SAN precursors compared to EM cells (23% vs 12%) and the levels of the transcription factors TBX5 and TBX18, both involved in SAN development. miR1OE SAN-like cells were bradycardic (1,3 vs 2 Hz) compared to EM cells. In agreement with data on native SAN cells, EM SAN-like cardiomyocytes show two populations of cells expressing either slow- or fast-activating If currents; miR1OE SAN-like cells instead have only fast-activating If with a significantly reduced conductance. Western Blot and immunofluorescence analysis showed a reduced HCN4 signal in miR-1OE vs EM CD166+ precursors. Together these data point out to a specific down-regulation of the slow-activating HCN4 subunit by miR-1. Importantly, the rate and If alterations were independent of the developmental effects of miR-1, being similar in NRVC transiently overexpressing miR-1.
In conclusion, we demonstrated a dual role of miR-1, during development it controls the proper development of sinoatrial-precursor, while in mature SAN-like cells it modulates the HCN4 pacemaker channel translation and thus the beating rate.
[Display omitted]
•miR-1 increase SAN-specific transcription factors and the number of SAN precursors during sinus node development•Silencing miR-1 impair spontaneous contraction in mESC-derived embryoid bodies.•miR-1 slows the beating rate of pacemaker cells by inhibiting HCN4 translation and thus reducing the If current•miR-1 Overexpression accelerate If activation kinetics and decreases cAMP response compatibly with a decreased HCN4/HCN1</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2021.05.001</identifier><identifier>PMID: 33964276</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Action Potentials ; Activated-Leukocyte Cell Adhesion Molecule - metabolism ; Animals ; Biomarkers ; Cardiac & Cardiovascular Systems ; Cardiovascular System & Cardiology ; Cell Biology ; Cell Differentiation - genetics ; Electrophysiological Phenomena ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Gene Expression ; Gene Expression Regulation ; HCN4 ; If current ; Immunophenotyping ; Life Sciences & Biomedicine ; Mice ; microRNA ; MicroRNAs - genetics ; miR-1 ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Rats ; Science & Technology ; Sinoatrial Node - cytology ; Sinoatrial Node - metabolism ; Sinus node</subject><ispartof>Journal of molecular and cellular cardiology, 2021-08, Vol.157, p.104-112</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000677734200005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c404t-8818e90dcac9422821601d2e5e8c54f959afeec62272bc2660e7f2e62323cf593</citedby><cites>FETCH-LOGICAL-c404t-8818e90dcac9422821601d2e5e8c54f959afeec62272bc2660e7f2e62323cf593</cites><orcidid>0000-0002-3371-3301 ; 0000-0002-1785-5529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yjmcc.2021.05.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33964276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benzoni, P.</creatorcontrib><creatorcontrib>Nava, L.</creatorcontrib><creatorcontrib>Giannetti, F.</creatorcontrib><creatorcontrib>Guerini, G.</creatorcontrib><creatorcontrib>Gualdoni, A.</creatorcontrib><creatorcontrib>Bazzini, C.</creatorcontrib><creatorcontrib>Milanesi, R.</creatorcontrib><creatorcontrib>Bucchi, A.</creatorcontrib><creatorcontrib>Baruscotti, M.</creatorcontrib><creatorcontrib>Barbuti, A.</creatorcontrib><title>Dual role of miR-1 in the development and function of sinoatrial cells</title><title>Journal of molecular and cellular cardiology</title><addtitle>J MOL CELL CARDIOL</addtitle><addtitle>J Mol Cell Cardiol</addtitle><description>miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpression in the development and function of sinoatrial (SAN) cells using murine embryonic stem cells (mESC).
We generated mESCs either overexpressing miR-1 and EGFP (miR1OE) or EGFP only (EM). SAN-like cells were selected from differentiating mESC using the CD166 marker. Gene expression and electrophysiological analysis were carried out on both early mES-derived cardiac progenitors and SAN-like cells and on beating neonatal rat ventricular cardiomyocytes (NRVC) over-expressing miR-1.
miR1OE cells increased significantly the proportion of CD166+ SAN precursors compared to EM cells (23% vs 12%) and the levels of the transcription factors TBX5 and TBX18, both involved in SAN development. miR1OE SAN-like cells were bradycardic (1,3 vs 2 Hz) compared to EM cells. In agreement with data on native SAN cells, EM SAN-like cardiomyocytes show two populations of cells expressing either slow- or fast-activating If currents; miR1OE SAN-like cells instead have only fast-activating If with a significantly reduced conductance. Western Blot and immunofluorescence analysis showed a reduced HCN4 signal in miR-1OE vs EM CD166+ precursors. Together these data point out to a specific down-regulation of the slow-activating HCN4 subunit by miR-1. Importantly, the rate and If alterations were independent of the developmental effects of miR-1, being similar in NRVC transiently overexpressing miR-1.
In conclusion, we demonstrated a dual role of miR-1, during development it controls the proper development of sinoatrial-precursor, while in mature SAN-like cells it modulates the HCN4 pacemaker channel translation and thus the beating rate.
[Display omitted]
•miR-1 increase SAN-specific transcription factors and the number of SAN precursors during sinus node development•Silencing miR-1 impair spontaneous contraction in mESC-derived embryoid bodies.•miR-1 slows the beating rate of pacemaker cells by inhibiting HCN4 translation and thus reducing the If current•miR-1 Overexpression accelerate If activation kinetics and decreases cAMP response compatibly with a decreased HCN4/HCN1</description><subject>Action Potentials</subject><subject>Activated-Leukocyte Cell Adhesion Molecule - metabolism</subject><subject>Animals</subject><subject>Biomarkers</subject><subject>Cardiac & Cardiovascular Systems</subject><subject>Cardiovascular System & Cardiology</subject><subject>Cell Biology</subject><subject>Cell Differentiation - genetics</subject><subject>Electrophysiological Phenomena</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>HCN4</subject><subject>If current</subject><subject>Immunophenotyping</subject><subject>Life Sciences & Biomedicine</subject><subject>Mice</subject><subject>microRNA</subject><subject>MicroRNAs - genetics</subject><subject>miR-1</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Rats</subject><subject>Science & Technology</subject><subject>Sinoatrial Node - cytology</subject><subject>Sinoatrial Node - metabolism</subject><subject>Sinus node</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkMFu1DAQQC0EotvCFyChHJFQwngcO86BA1poqVQJqSpnK-tMhFeJvdhJq_49Drv0iHqyD-95xo-xdxwqDlx92leP-8naCgF5BbIC4C_YhkMrSy11_ZJtABBL1KjP2HlKewBoayFeszMhWlVjozbs8uvSjUUMIxVhKCZ3W_LC-WL-RUVP9zSGw0R-LjrfF8Pi7eyCX8HkfOjm6LJraRzTG_Zq6MZEb0_nBft5-e1u-728-XF1vf1yU9oa6rnUmmtqobedbWvMm3EFvEeSpK2sh1a23UBkFWKDO4tKATUDkkKBwg6yFRfsw_HdQwy_F0qzmVxaN-g8hSUZlFjnIZyvqDiiNoaUIg3mEN3UxUfDwawBzd78DWjWgAakyQGz9f40YNlN1D85_4pl4OMReKBdGJJ15C09YTmxappG1JhvIDOtn09v3dytgbdh8XNWPx9Vyj3vHUVz0nsXyc6mD-6_P_kD7LihlQ</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Benzoni, P.</creator><creator>Nava, L.</creator><creator>Giannetti, F.</creator><creator>Guerini, G.</creator><creator>Gualdoni, A.</creator><creator>Bazzini, C.</creator><creator>Milanesi, R.</creator><creator>Bucchi, A.</creator><creator>Baruscotti, M.</creator><creator>Barbuti, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3371-3301</orcidid><orcidid>https://orcid.org/0000-0002-1785-5529</orcidid></search><sort><creationdate>202108</creationdate><title>Dual role of miR-1 in the development and function of sinoatrial cells</title><author>Benzoni, P. ; Nava, L. ; Giannetti, F. ; Guerini, G. ; Gualdoni, A. ; Bazzini, C. ; Milanesi, R. ; Bucchi, A. ; Baruscotti, M. ; Barbuti, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8818e90dcac9422821601d2e5e8c54f959afeec62272bc2660e7f2e62323cf593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Action Potentials</topic><topic>Activated-Leukocyte Cell Adhesion Molecule - metabolism</topic><topic>Animals</topic><topic>Biomarkers</topic><topic>Cardiac & Cardiovascular Systems</topic><topic>Cardiovascular System & Cardiology</topic><topic>Cell Biology</topic><topic>Cell Differentiation - genetics</topic><topic>Electrophysiological Phenomena</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>HCN4</topic><topic>If current</topic><topic>Immunophenotyping</topic><topic>Life Sciences & Biomedicine</topic><topic>Mice</topic><topic>microRNA</topic><topic>MicroRNAs - genetics</topic><topic>miR-1</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Rats</topic><topic>Science & Technology</topic><topic>Sinoatrial Node - cytology</topic><topic>Sinoatrial Node - metabolism</topic><topic>Sinus node</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benzoni, P.</creatorcontrib><creatorcontrib>Nava, L.</creatorcontrib><creatorcontrib>Giannetti, F.</creatorcontrib><creatorcontrib>Guerini, G.</creatorcontrib><creatorcontrib>Gualdoni, A.</creatorcontrib><creatorcontrib>Bazzini, C.</creatorcontrib><creatorcontrib>Milanesi, R.</creatorcontrib><creatorcontrib>Bucchi, A.</creatorcontrib><creatorcontrib>Baruscotti, M.</creatorcontrib><creatorcontrib>Barbuti, A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benzoni, P.</au><au>Nava, L.</au><au>Giannetti, F.</au><au>Guerini, G.</au><au>Gualdoni, A.</au><au>Bazzini, C.</au><au>Milanesi, R.</au><au>Bucchi, A.</au><au>Baruscotti, M.</au><au>Barbuti, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual role of miR-1 in the development and function of sinoatrial cells</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><stitle>J MOL CELL CARDIOL</stitle><addtitle>J Mol Cell Cardiol</addtitle><date>2021-08</date><risdate>2021</risdate><volume>157</volume><spage>104</spage><epage>112</epage><pages>104-112</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>miR-1, the most abundant miRNA in the heart, modulates expression of several transcription factors and ion channels. Conditions affecting the heart rate, such as endurance training and cardiac diseases, show a concomitant miR-1 up- or down-regulation. Here, we investigated the role of miR-1 overexpression in the development and function of sinoatrial (SAN) cells using murine embryonic stem cells (mESC).
We generated mESCs either overexpressing miR-1 and EGFP (miR1OE) or EGFP only (EM). SAN-like cells were selected from differentiating mESC using the CD166 marker. Gene expression and electrophysiological analysis were carried out on both early mES-derived cardiac progenitors and SAN-like cells and on beating neonatal rat ventricular cardiomyocytes (NRVC) over-expressing miR-1.
miR1OE cells increased significantly the proportion of CD166+ SAN precursors compared to EM cells (23% vs 12%) and the levels of the transcription factors TBX5 and TBX18, both involved in SAN development. miR1OE SAN-like cells were bradycardic (1,3 vs 2 Hz) compared to EM cells. In agreement with data on native SAN cells, EM SAN-like cardiomyocytes show two populations of cells expressing either slow- or fast-activating If currents; miR1OE SAN-like cells instead have only fast-activating If with a significantly reduced conductance. Western Blot and immunofluorescence analysis showed a reduced HCN4 signal in miR-1OE vs EM CD166+ precursors. Together these data point out to a specific down-regulation of the slow-activating HCN4 subunit by miR-1. Importantly, the rate and If alterations were independent of the developmental effects of miR-1, being similar in NRVC transiently overexpressing miR-1.
In conclusion, we demonstrated a dual role of miR-1, during development it controls the proper development of sinoatrial-precursor, while in mature SAN-like cells it modulates the HCN4 pacemaker channel translation and thus the beating rate.
[Display omitted]
•miR-1 increase SAN-specific transcription factors and the number of SAN precursors during sinus node development•Silencing miR-1 impair spontaneous contraction in mESC-derived embryoid bodies.•miR-1 slows the beating rate of pacemaker cells by inhibiting HCN4 translation and thus reducing the If current•miR-1 Overexpression accelerate If activation kinetics and decreases cAMP response compatibly with a decreased HCN4/HCN1</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>33964276</pmid><doi>10.1016/j.yjmcc.2021.05.001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3371-3301</orcidid><orcidid>https://orcid.org/0000-0002-1785-5529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2828 |
ispartof | Journal of molecular and cellular cardiology, 2021-08, Vol.157, p.104-112 |
issn | 0022-2828 1095-8584 |
language | eng |
recordid | cdi_webofscience_primary_000677734200005 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Action Potentials Activated-Leukocyte Cell Adhesion Molecule - metabolism Animals Biomarkers Cardiac & Cardiovascular Systems Cardiovascular System & Cardiology Cell Biology Cell Differentiation - genetics Electrophysiological Phenomena Embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Gene Expression Gene Expression Regulation HCN4 If current Immunophenotyping Life Sciences & Biomedicine Mice microRNA MicroRNAs - genetics miR-1 Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism Rats Science & Technology Sinoatrial Node - cytology Sinoatrial Node - metabolism Sinus node |
title | Dual role of miR-1 in the development and function of sinoatrial cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T12%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20role%20of%20miR-1%20in%20the%20development%20and%20function%20of%20sinoatrial%20cells&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Benzoni,%20P.&rft.date=2021-08&rft.volume=157&rft.spage=104&rft.epage=112&rft.pages=104-112&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2021.05.001&rft_dat=%3Cproquest_webof%3E2524881119%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524881119&rft_id=info:pmid/33964276&rft_els_id=S0022282821000894&rfr_iscdi=true |