Design of a Giant Magnetoresistance Device with High Spin Filter Efficiency

Molecular spintronics may boost the development of nanoscale devices with improved performance and enhanced functionality, which is very promising for the next generation of electronic devices. Here, we design a new type of spintronics device based on the novel 2D material C3N. Using nonequilibrium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-07, Vol.125 (28), p.15544-15550
Hauptverfasser: Gao, Fengxian, Liu, Lu, Xu, Ke, Zhao, Songtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15550
container_issue 28
container_start_page 15544
container_title Journal of physical chemistry. C
container_volume 125
creator Gao, Fengxian
Liu, Lu
Xu, Ke
Zhao, Songtao
description Molecular spintronics may boost the development of nanoscale devices with improved performance and enhanced functionality, which is very promising for the next generation of electronic devices. Here, we design a new type of spintronics device based on the novel 2D material C3N. Using nonequilibrium Green’s function in combination with the density functional theory, we systematically study the spin-dependent transport properties in four different magnetic configurations of the C3N junction, and the perfect spin filter efficiency and giant magnetoresistance effects are achieved. The calculated results clearly demonstrate that the transport properties of the C3N junction are sensitive to the magnetic configuration of the electrodes. The calculated spin-resolved transmission spectra of the proposed ferromagnetic coupling C3N junctions exhibit a robust spin filtering effect, where the conductance is mainly governed by the spin-down electrons. Under the small bias voltage, the transport properties are mainly determined by the spin-down channel and exhibit a large spin polarization. The conductance of three antiferromagnetic coupling states is nearly zero at the Fermi level. These theoretical results indicate that the novel 2D C3N monolayer is promising for molecular spintronics devices in the near future.
doi_str_mv 10.1021/acs.jpcc.1c02768
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000677581600046CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b994467549</sourcerecordid><originalsourceid>FETCH-LOGICAL-a233t-f375243463b03c0ecf8e3468f992bd862ad0199de26ce1b346d61b0d893a42853</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqWwM3qHlLOdOM6I0i9EEQMwR45jt66KU8UuVf897oe6ITHdne6e06sHoXsCAwKUPEnlB8u1UgOigOZcXKAeKRhN8jTLLs99ml-jG--XABkDwnrodai9nTvcGizxxEoX8JucOx3aLi58kE5pPNQ_NpatDQs8tfMF_lhbh8d2FXSHR8ZYZbVTu1t0ZeTK67tT7aOv8eiznCaz98lL-TxLJGUsJIblGU1ZylkNTIFWRug4CVMUtG4Ep7IBUhSNplxpUsdVw0kNjSiYTKnIWB_B8a_qWu87bap1Z79lt6sIVHsZVZRR7WVUJxkREUdkq-vW-ENefcYAgOd5JgiPXcpLG2SwrSvbjQsRffg_Gq8fj9eHCO2mc9HE37l-Aci7gwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of a Giant Magnetoresistance Device with High Spin Filter Efficiency</title><source>American Chemical Society Journals</source><creator>Gao, Fengxian ; Liu, Lu ; Xu, Ke ; Zhao, Songtao</creator><creatorcontrib>Gao, Fengxian ; Liu, Lu ; Xu, Ke ; Zhao, Songtao</creatorcontrib><description>Molecular spintronics may boost the development of nanoscale devices with improved performance and enhanced functionality, which is very promising for the next generation of electronic devices. Here, we design a new type of spintronics device based on the novel 2D material C3N. Using nonequilibrium Green’s function in combination with the density functional theory, we systematically study the spin-dependent transport properties in four different magnetic configurations of the C3N junction, and the perfect spin filter efficiency and giant magnetoresistance effects are achieved. The calculated results clearly demonstrate that the transport properties of the C3N junction are sensitive to the magnetic configuration of the electrodes. The calculated spin-resolved transmission spectra of the proposed ferromagnetic coupling C3N junctions exhibit a robust spin filtering effect, where the conductance is mainly governed by the spin-down electrons. Under the small bias voltage, the transport properties are mainly determined by the spin-down channel and exhibit a large spin polarization. The conductance of three antiferromagnetic coupling states is nearly zero at the Fermi level. These theoretical results indicate that the novel 2D C3N monolayer is promising for molecular spintronics devices in the near future.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c02768</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces ; Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Journal of physical chemistry. C, 2021-07, Vol.125 (28), p.15544-15550</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000677581600046</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a233t-f375243463b03c0ecf8e3468f992bd862ad0199de26ce1b346d61b0d893a42853</cites><orcidid>0000-0003-0991-3677 ; 0000-0002-8668-9755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c02768$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c02768$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Gao, Fengxian</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Zhao, Songtao</creatorcontrib><title>Design of a Giant Magnetoresistance Device with High Spin Filter Efficiency</title><title>Journal of physical chemistry. C</title><addtitle>J PHYS CHEM C</addtitle><addtitle>J. Phys. Chem. C</addtitle><description>Molecular spintronics may boost the development of nanoscale devices with improved performance and enhanced functionality, which is very promising for the next generation of electronic devices. Here, we design a new type of spintronics device based on the novel 2D material C3N. Using nonequilibrium Green’s function in combination with the density functional theory, we systematically study the spin-dependent transport properties in four different magnetic configurations of the C3N junction, and the perfect spin filter efficiency and giant magnetoresistance effects are achieved. The calculated results clearly demonstrate that the transport properties of the C3N junction are sensitive to the magnetic configuration of the electrodes. The calculated spin-resolved transmission spectra of the proposed ferromagnetic coupling C3N junctions exhibit a robust spin filtering effect, where the conductance is mainly governed by the spin-down electrons. Under the small bias voltage, the transport properties are mainly determined by the spin-down channel and exhibit a large spin polarization. The conductance of three antiferromagnetic coupling states is nearly zero at the Fermi level. These theoretical results indicate that the novel 2D C3N monolayer is promising for molecular spintronics devices in the near future.</description><subject>C: Physical Properties of Materials and Interfaces</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkD1PwzAQhi0EEqWwM3qHlLOdOM6I0i9EEQMwR45jt66KU8UuVf897oe6ITHdne6e06sHoXsCAwKUPEnlB8u1UgOigOZcXKAeKRhN8jTLLs99ml-jG--XABkDwnrodai9nTvcGizxxEoX8JucOx3aLi58kE5pPNQ_NpatDQs8tfMF_lhbh8d2FXSHR8ZYZbVTu1t0ZeTK67tT7aOv8eiznCaz98lL-TxLJGUsJIblGU1ZylkNTIFWRug4CVMUtG4Ep7IBUhSNplxpUsdVw0kNjSiYTKnIWB_B8a_qWu87bap1Z79lt6sIVHsZVZRR7WVUJxkREUdkq-vW-ENefcYAgOd5JgiPXcpLG2SwrSvbjQsRffg_Gq8fj9eHCO2mc9HE37l-Aci7gwM</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Gao, Fengxian</creator><creator>Liu, Lu</creator><creator>Xu, Ke</creator><creator>Zhao, Songtao</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0991-3677</orcidid><orcidid>https://orcid.org/0000-0002-8668-9755</orcidid></search><sort><creationdate>20210722</creationdate><title>Design of a Giant Magnetoresistance Device with High Spin Filter Efficiency</title><author>Gao, Fengxian ; Liu, Lu ; Xu, Ke ; Zhao, Songtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a233t-f375243463b03c0ecf8e3468f992bd862ad0199de26ce1b346d61b0d893a42853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Fengxian</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Zhao, Songtao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Fengxian</au><au>Liu, Lu</au><au>Xu, Ke</au><au>Zhao, Songtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Giant Magnetoresistance Device with High Spin Filter Efficiency</atitle><jtitle>Journal of physical chemistry. C</jtitle><stitle>J PHYS CHEM C</stitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-07-22</date><risdate>2021</risdate><volume>125</volume><issue>28</issue><spage>15544</spage><epage>15550</epage><pages>15544-15550</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Molecular spintronics may boost the development of nanoscale devices with improved performance and enhanced functionality, which is very promising for the next generation of electronic devices. Here, we design a new type of spintronics device based on the novel 2D material C3N. Using nonequilibrium Green’s function in combination with the density functional theory, we systematically study the spin-dependent transport properties in four different magnetic configurations of the C3N junction, and the perfect spin filter efficiency and giant magnetoresistance effects are achieved. The calculated results clearly demonstrate that the transport properties of the C3N junction are sensitive to the magnetic configuration of the electrodes. The calculated spin-resolved transmission spectra of the proposed ferromagnetic coupling C3N junctions exhibit a robust spin filtering effect, where the conductance is mainly governed by the spin-down electrons. Under the small bias voltage, the transport properties are mainly determined by the spin-down channel and exhibit a large spin polarization. The conductance of three antiferromagnetic coupling states is nearly zero at the Fermi level. These theoretical results indicate that the novel 2D C3N monolayer is promising for molecular spintronics devices in the near future.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c02768</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0991-3677</orcidid><orcidid>https://orcid.org/0000-0002-8668-9755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-07, Vol.125 (28), p.15544-15550
issn 1932-7447
1932-7455
language eng
recordid cdi_webofscience_primary_000677581600046CitationCount
source American Chemical Society Journals
subjects C: Physical Properties of Materials and Interfaces
Chemistry
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Science & Technology
Science & Technology - Other Topics
Technology
title Design of a Giant Magnetoresistance Device with High Spin Filter Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Giant%20Magnetoresistance%20Device%20with%20High%20Spin%20Filter%20Efficiency&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gao,%20Fengxian&rft.date=2021-07-22&rft.volume=125&rft.issue=28&rft.spage=15544&rft.epage=15550&rft.pages=15544-15550&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c02768&rft_dat=%3Cacs_webof%3Eb994467549%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true