Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene

Semi‐hydrogenation of acetylene to ethylene is an important process to purify ethylene streams in industry. However, among current approaches reported in the literature, high ethylene selectivity has been generally achieved at the expense of activity. Herein, we show that a Ga2O3 coating of Ag@Pd co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-08, Vol.60 (35), p.19324-19330
Hauptverfasser: Liu, Fang, Xia, Yujia, Xu, Wenlong, Cao, Lina, Guan, Qiaoqiao, Gu, Qingqing, Yang, Bing, Lu, Junling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19330
container_issue 35
container_start_page 19324
container_title Angewandte Chemie International Edition
container_volume 60
creator Liu, Fang
Xia, Yujia
Xu, Wenlong
Cao, Lina
Guan, Qiaoqiao
Gu, Qingqing
Yang, Bing
Lu, Junling
description Semi‐hydrogenation of acetylene to ethylene is an important process to purify ethylene streams in industry. However, among current approaches reported in the literature, high ethylene selectivity has been generally achieved at the expense of activity. Herein, we show that a Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalysts, allows improvement of the ethylene selectivity to a much greater extent than the coating of monometallic Pd nanoparticles, while preserving a remarkable intrinsic activity, approximately 50 times higher than the benchmark catalyst of Pd1Ag single‐atom alloys (SAAs). Importantly, the resulting catalyst also shows excellent long‐term stability, by suppressing coke formation efficiently. Spectroscopic characterization reveals that weakened ethylene adsorption by bimetallic electronic synergy, and oxide site isolation are both essential for the high ethylene selectivity and high‐coking resistance. H‐D exchange measurements further show that the Ga2O3‐coated Ag@Pd catalyst possesses a much higher activity of H2 activation than that of Pd1Ag SAAs, thus boosting the hydrogenation activity at the same time. A Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalyst improves the ethylene selectivity compared with a coated Pd monometallic catalyst. The intrinsic activity is preserved and is approximately 50 times higher than the benchmark Pd1Ag single‐atom alloy catalysts.
doi_str_mv 10.1002/anie.202105931
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000677213400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546598589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-8044394cedc68a98981623afb085bbb161bc69aa3bc01324fe71aaab8e16e0c33</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpaD7aa8-CXgrBG40l2_Jxu2wTQ2gOSc5G1o43CloplbRJ_O-r7YYt9NKe9IKeZ3iZIeQzsBkwVl4oZ3BWshJY1XJ4R06gKqHgTcPf5yw4LxpZwTE5jfEx81Ky-gM55gKk4E17Ql47l3AdVDLeUT_Sb2aDSVlrNF1a1Cl4l-Pt5DCsJ_pi0gO9eTUrpLcmIe2it3u12zwF_4yRpof8hzvVPCO9mlbBr9Ed5s81psmiw4_kaFQ24qe394zcf1_eLa6K65vLbjG_LjSvGBSSCcFboXGla6la2UqoS67GgclqGAaoYdB1qxQfNANeihEbUEoNEqFGpjk_I1_3c3O_n1uMqd-YqNFa5dBvY19Woq5aWck2o1_-Qh_9NrjcLlM15D0CF5ma7SkdfIwBx_4pmI0KUw-s392k392kP9wkC3IvvODgx6gNOo0HiTFWN02ZJ-fEYGHS710t_NalrJ7_v5rp9o02Fqd_1OrnP7rln5K_AIxxsE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561851134</pqid></control><display><type>article</type><title>Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Liu, Fang ; Xia, Yujia ; Xu, Wenlong ; Cao, Lina ; Guan, Qiaoqiao ; Gu, Qingqing ; Yang, Bing ; Lu, Junling</creator><creatorcontrib>Liu, Fang ; Xia, Yujia ; Xu, Wenlong ; Cao, Lina ; Guan, Qiaoqiao ; Gu, Qingqing ; Yang, Bing ; Lu, Junling</creatorcontrib><description>Semi‐hydrogenation of acetylene to ethylene is an important process to purify ethylene streams in industry. However, among current approaches reported in the literature, high ethylene selectivity has been generally achieved at the expense of activity. Herein, we show that a Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalysts, allows improvement of the ethylene selectivity to a much greater extent than the coating of monometallic Pd nanoparticles, while preserving a remarkable intrinsic activity, approximately 50 times higher than the benchmark catalyst of Pd1Ag single‐atom alloys (SAAs). Importantly, the resulting catalyst also shows excellent long‐term stability, by suppressing coke formation efficiently. Spectroscopic characterization reveals that weakened ethylene adsorption by bimetallic electronic synergy, and oxide site isolation are both essential for the high ethylene selectivity and high‐coking resistance. H‐D exchange measurements further show that the Ga2O3‐coated Ag@Pd catalyst possesses a much higher activity of H2 activation than that of Pd1Ag SAAs, thus boosting the hydrogenation activity at the same time. A Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalyst improves the ethylene selectivity compared with a coated Pd monometallic catalyst. The intrinsic activity is preserved and is approximately 50 times higher than the benchmark Pd1Ag single‐atom alloy catalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202105931</identifier><identifier>PMID: 34184379</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Acetylene ; atomic layer deposition ; bimetallic catalysts ; Bimetals ; Catalysts ; Chemistry ; Chemistry, Multidisciplinary ; Coatings ; Coking ; Ethylene ; Gallium oxides ; Hydrogenation ; Nanoparticles ; oxide overcoating ; Palladium ; Physical Sciences ; Science &amp; Technology ; Selectivity ; Silver</subject><ispartof>Angewandte Chemie International Edition, 2021-08, Vol.60 (35), p.19324-19330</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>65</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000677213400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3501-8044394cedc68a98981623afb085bbb161bc69aa3bc01324fe71aaab8e16e0c33</citedby><cites>FETCH-LOGICAL-c3501-8044394cedc68a98981623afb085bbb161bc69aa3bc01324fe71aaab8e16e0c33</cites><orcidid>0000-0002-2607-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202105931$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202105931$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xia, Yujia</creatorcontrib><creatorcontrib>Xu, Wenlong</creatorcontrib><creatorcontrib>Cao, Lina</creatorcontrib><creatorcontrib>Guan, Qiaoqiao</creatorcontrib><creatorcontrib>Gu, Qingqing</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Lu, Junling</creatorcontrib><title>Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene</title><title>Angewandte Chemie International Edition</title><addtitle>ANGEW CHEM INT EDIT</addtitle><description>Semi‐hydrogenation of acetylene to ethylene is an important process to purify ethylene streams in industry. However, among current approaches reported in the literature, high ethylene selectivity has been generally achieved at the expense of activity. Herein, we show that a Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalysts, allows improvement of the ethylene selectivity to a much greater extent than the coating of monometallic Pd nanoparticles, while preserving a remarkable intrinsic activity, approximately 50 times higher than the benchmark catalyst of Pd1Ag single‐atom alloys (SAAs). Importantly, the resulting catalyst also shows excellent long‐term stability, by suppressing coke formation efficiently. Spectroscopic characterization reveals that weakened ethylene adsorption by bimetallic electronic synergy, and oxide site isolation are both essential for the high ethylene selectivity and high‐coking resistance. H‐D exchange measurements further show that the Ga2O3‐coated Ag@Pd catalyst possesses a much higher activity of H2 activation than that of Pd1Ag SAAs, thus boosting the hydrogenation activity at the same time. A Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalyst improves the ethylene selectivity compared with a coated Pd monometallic catalyst. The intrinsic activity is preserved and is approximately 50 times higher than the benchmark Pd1Ag single‐atom alloy catalysts.</description><subject>Acetylene</subject><subject>atomic layer deposition</subject><subject>bimetallic catalysts</subject><subject>Bimetals</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Coatings</subject><subject>Coking</subject><subject>Ethylene</subject><subject>Gallium oxides</subject><subject>Hydrogenation</subject><subject>Nanoparticles</subject><subject>oxide overcoating</subject><subject>Palladium</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Selectivity</subject><subject>Silver</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1r3DAQhkVpaD7aa8-CXgrBG40l2_Jxu2wTQ2gOSc5G1o43CloplbRJ_O-r7YYt9NKe9IKeZ3iZIeQzsBkwVl4oZ3BWshJY1XJ4R06gKqHgTcPf5yw4LxpZwTE5jfEx81Ky-gM55gKk4E17Ql47l3AdVDLeUT_Sb2aDSVlrNF1a1Cl4l-Pt5DCsJ_pi0gO9eTUrpLcmIe2it3u12zwF_4yRpof8hzvVPCO9mlbBr9Ed5s81psmiw4_kaFQ24qe394zcf1_eLa6K65vLbjG_LjSvGBSSCcFboXGla6la2UqoS67GgclqGAaoYdB1qxQfNANeihEbUEoNEqFGpjk_I1_3c3O_n1uMqd-YqNFa5dBvY19Woq5aWck2o1_-Qh_9NrjcLlM15D0CF5ma7SkdfIwBx_4pmI0KUw-s392k392kP9wkC3IvvODgx6gNOo0HiTFWN02ZJ-fEYGHS710t_NalrJ7_v5rp9o02Fqd_1OrnP7rln5K_AIxxsE8</recordid><startdate>20210823</startdate><enddate>20210823</enddate><creator>Liu, Fang</creator><creator>Xia, Yujia</creator><creator>Xu, Wenlong</creator><creator>Cao, Lina</creator><creator>Guan, Qiaoqiao</creator><creator>Gu, Qingqing</creator><creator>Yang, Bing</creator><creator>Lu, Junling</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2607-6869</orcidid></search><sort><creationdate>20210823</creationdate><title>Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene</title><author>Liu, Fang ; Xia, Yujia ; Xu, Wenlong ; Cao, Lina ; Guan, Qiaoqiao ; Gu, Qingqing ; Yang, Bing ; Lu, Junling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-8044394cedc68a98981623afb085bbb161bc69aa3bc01324fe71aaab8e16e0c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetylene</topic><topic>atomic layer deposition</topic><topic>bimetallic catalysts</topic><topic>Bimetals</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Coatings</topic><topic>Coking</topic><topic>Ethylene</topic><topic>Gallium oxides</topic><topic>Hydrogenation</topic><topic>Nanoparticles</topic><topic>oxide overcoating</topic><topic>Palladium</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Selectivity</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Xia, Yujia</creatorcontrib><creatorcontrib>Xu, Wenlong</creatorcontrib><creatorcontrib>Cao, Lina</creatorcontrib><creatorcontrib>Guan, Qiaoqiao</creatorcontrib><creatorcontrib>Gu, Qingqing</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Lu, Junling</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fang</au><au>Xia, Yujia</au><au>Xu, Wenlong</au><au>Cao, Lina</au><au>Guan, Qiaoqiao</au><au>Gu, Qingqing</au><au>Yang, Bing</au><au>Lu, Junling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene</atitle><jtitle>Angewandte Chemie International Edition</jtitle><stitle>ANGEW CHEM INT EDIT</stitle><date>2021-08-23</date><risdate>2021</risdate><volume>60</volume><issue>35</issue><spage>19324</spage><epage>19330</epage><pages>19324-19330</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Semi‐hydrogenation of acetylene to ethylene is an important process to purify ethylene streams in industry. However, among current approaches reported in the literature, high ethylene selectivity has been generally achieved at the expense of activity. Herein, we show that a Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalysts, allows improvement of the ethylene selectivity to a much greater extent than the coating of monometallic Pd nanoparticles, while preserving a remarkable intrinsic activity, approximately 50 times higher than the benchmark catalyst of Pd1Ag single‐atom alloys (SAAs). Importantly, the resulting catalyst also shows excellent long‐term stability, by suppressing coke formation efficiently. Spectroscopic characterization reveals that weakened ethylene adsorption by bimetallic electronic synergy, and oxide site isolation are both essential for the high ethylene selectivity and high‐coking resistance. H‐D exchange measurements further show that the Ga2O3‐coated Ag@Pd catalyst possesses a much higher activity of H2 activation than that of Pd1Ag SAAs, thus boosting the hydrogenation activity at the same time. A Ga2O3 coating of Ag@Pd core–shell bimetallic nanoparticle catalyst improves the ethylene selectivity compared with a coated Pd monometallic catalyst. The intrinsic activity is preserved and is approximately 50 times higher than the benchmark Pd1Ag single‐atom alloy catalysts.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>34184379</pmid><doi>10.1002/anie.202105931</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2607-6869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-08, Vol.60 (35), p.19324-19330
issn 1433-7851
1521-3773
language eng
recordid cdi_webofscience_primary_000677213400001CitationCount
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Acetylene
atomic layer deposition
bimetallic catalysts
Bimetals
Catalysts
Chemistry
Chemistry, Multidisciplinary
Coatings
Coking
Ethylene
Gallium oxides
Hydrogenation
Nanoparticles
oxide overcoating
Palladium
Physical Sciences
Science & Technology
Selectivity
Silver
title Integration of Bimetallic Electronic Synergy with Oxide Site Isolation Improves the Selective Hydrogenation of Acetylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Bimetallic%20Electronic%20Synergy%20with%20Oxide%20Site%20Isolation%20Improves%20the%20Selective%20Hydrogenation%20of%20Acetylene&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Fang&rft.date=2021-08-23&rft.volume=60&rft.issue=35&rft.spage=19324&rft.epage=19330&rft.pages=19324-19330&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202105931&rft_dat=%3Cproquest_webof%3E2546598589%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561851134&rft_id=info:pmid/34184379&rfr_iscdi=true