Mapping the Pathway to Organocopper(II) Complexes Relevant to Atom Transfer Radical Polymerization
The rare organocopper(II) complex [Cu(Me6tren)(CH2CN)]+ (Me6tren = tris(2-(dimethylamino)ethyl)amine) has emerged as an important model of potential byproducts in copper-catalyzed atom transfer radical polymerization. This complex has been generated by controlled potential electrolysis of [Cu...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2021-07, Vol.60 (14), p.10648-10655 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rare organocopper(II) complex [Cu(Me6tren)(CH2CN)]+ (Me6tren = tris(2-(dimethylamino)ethyl)amine) has emerged as an important model of potential byproducts in copper-catalyzed atom transfer radical polymerization. This complex has been generated by controlled potential electrolysis of [Cu(Me6tren)(NCMe)]2+ in the presence of BrCH2CN. Time-resolved UV–vis and continuous wave and pulse electron paramagnetic resonance (EPR) spectra identified [Cu(Me6tren)Br]+ as an intermediate. Hyperfine sublevel correlation and electron nuclear double resonance spectroscopy of samples at different timepoints reveal signals that are assigned to a C-bound cyanomethylate ligand, with distinct 14N and 1H hyperfine coupling constants in comparison with the corresponding N-bound acetonitrile and bromido complexes. The experimental EPR data are supported by density functional theory calculations to understand how the geometries of the species involved produce distinct spectroscopic signatures, and a clear picture of how this unusual organocopper(II) complex is formed has emerged. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c01309 |