Impact of a microfluidic jet on a pendant droplet
High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant l...
Gespeichert in:
Veröffentlicht in: | Soft matter 2021-08, Vol.17 (32), p.7466-7475 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7475 |
---|---|
container_issue | 32 |
container_start_page | 7466 |
container_title | Soft matter |
container_volume | 17 |
creator | Quetzeri-Santiago, Miguel A Hunter, Ian W van der Meer, Devaraj Fernandez Rivas, David |
description | High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties.
The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects. |
doi_str_mv | 10.1039/d1sm00706h |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000674168300001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562239344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</originalsourceid><addsrcrecordid>eNqNkstPFTEUxhujEUQ37jWTuDGSC31Np92YkAsCCcQFmrhr-hrpzUw7tB0J_z3Fi-Nj5eqcnP6-09PzFYDXCB4gSMShRXmEsIPs-gnYRR2lK8Ypf7rk5NsOeJHzBkLCKWLPwQ6hmPG2RbsAnY-TMqWJfaOa0ZsU-2H21ptm42o11OrkglWhNDbFaXDlJXjWqyG7V49xD3z9dPJlfba6-Hx6vj66WBmKeVlpVO_qCGU94ZAJK7SuURuuIWXQOCQcE0pZxQnTWPBed7i1VDNlBGXIkj3wcdt3mvXorHGhJDXIKflRpTsZlZd_nwR_Lb_HH5KTDlPEa4P3jw1SvJldLnL02bhhUMHFOUvctlh0gglc0Xf_oJs4p1CfVymGMRGE0kp92FJ1Szkn1y_DICgfnJDH6OrypxNnFX775_gL-mv1FdjfArdOxz4b74JxCwYhZF01i5OawQea_z-99kUVH8M6zqFU6ZutNGWzKH7_GXIPssytCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562239344</pqid></control><display><type>article</type><title>Impact of a microfluidic jet on a pendant droplet</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Quetzeri-Santiago, Miguel A ; Hunter, Ian W ; van der Meer, Devaraj ; Fernandez Rivas, David</creator><creatorcontrib>Quetzeri-Santiago, Miguel A ; Hunter, Ian W ; van der Meer, Devaraj ; Fernandez Rivas, David</creatorcontrib><description>High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties.
The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00706h</identifier><identifier>PMID: 34268551</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Chemistry ; Chemistry, Physical ; Droplets ; Energy balance ; Evaporation ; Impact velocity ; Jet interaction ; Materials Science ; Materials Science, Multidisciplinary ; Microfluidics ; Physical properties ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Pollutants ; Polymer Science ; Science & Technology ; Surfactants ; Technology ; Velocity ; Viscoelasticity</subject><ispartof>Soft matter, 2021-08, Vol.17 (32), p.7466-7475</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674168300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</citedby><cites>FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</cites><orcidid>0000-0003-4329-3248 ; 0000-0003-4420-9714 ; 0000-0003-3324-6800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34268551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quetzeri-Santiago, Miguel A</creatorcontrib><creatorcontrib>Hunter, Ian W</creatorcontrib><creatorcontrib>van der Meer, Devaraj</creatorcontrib><creatorcontrib>Fernandez Rivas, David</creatorcontrib><title>Impact of a microfluidic jet on a pendant droplet</title><title>Soft matter</title><addtitle>SOFT MATTER</addtitle><addtitle>Soft Matter</addtitle><description>High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties.
The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Droplets</subject><subject>Energy balance</subject><subject>Evaporation</subject><subject>Impact velocity</subject><subject>Jet interaction</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Microfluidics</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Pollutants</subject><subject>Polymer Science</subject><subject>Science & Technology</subject><subject>Surfactants</subject><subject>Technology</subject><subject>Velocity</subject><subject>Viscoelasticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkstPFTEUxhujEUQ37jWTuDGSC31Np92YkAsCCcQFmrhr-hrpzUw7tB0J_z3Fi-Nj5eqcnP6-09PzFYDXCB4gSMShRXmEsIPs-gnYRR2lK8Ypf7rk5NsOeJHzBkLCKWLPwQ6hmPG2RbsAnY-TMqWJfaOa0ZsU-2H21ptm42o11OrkglWhNDbFaXDlJXjWqyG7V49xD3z9dPJlfba6-Hx6vj66WBmKeVlpVO_qCGU94ZAJK7SuURuuIWXQOCQcE0pZxQnTWPBed7i1VDNlBGXIkj3wcdt3mvXorHGhJDXIKflRpTsZlZd_nwR_Lb_HH5KTDlPEa4P3jw1SvJldLnL02bhhUMHFOUvctlh0gglc0Xf_oJs4p1CfVymGMRGE0kp92FJ1Szkn1y_DICgfnJDH6OrypxNnFX775_gL-mv1FdjfArdOxz4b74JxCwYhZF01i5OawQea_z-99kUVH8M6zqFU6ZutNGWzKH7_GXIPssytCw</recordid><startdate>20210828</startdate><enddate>20210828</enddate><creator>Quetzeri-Santiago, Miguel A</creator><creator>Hunter, Ian W</creator><creator>van der Meer, Devaraj</creator><creator>Fernandez Rivas, David</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4329-3248</orcidid><orcidid>https://orcid.org/0000-0003-4420-9714</orcidid><orcidid>https://orcid.org/0000-0003-3324-6800</orcidid></search><sort><creationdate>20210828</creationdate><title>Impact of a microfluidic jet on a pendant droplet</title><author>Quetzeri-Santiago, Miguel A ; Hunter, Ian W ; van der Meer, Devaraj ; Fernandez Rivas, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Droplets</topic><topic>Energy balance</topic><topic>Evaporation</topic><topic>Impact velocity</topic><topic>Jet interaction</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Microfluidics</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Pollutants</topic><topic>Polymer Science</topic><topic>Science & Technology</topic><topic>Surfactants</topic><topic>Technology</topic><topic>Velocity</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quetzeri-Santiago, Miguel A</creatorcontrib><creatorcontrib>Hunter, Ian W</creatorcontrib><creatorcontrib>van der Meer, Devaraj</creatorcontrib><creatorcontrib>Fernandez Rivas, David</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quetzeri-Santiago, Miguel A</au><au>Hunter, Ian W</au><au>van der Meer, Devaraj</au><au>Fernandez Rivas, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of a microfluidic jet on a pendant droplet</atitle><jtitle>Soft matter</jtitle><stitle>SOFT MATTER</stitle><addtitle>Soft Matter</addtitle><date>2021-08-28</date><risdate>2021</risdate><volume>17</volume><issue>32</issue><spage>7466</spage><epage>7475</epage><pages>7466-7475</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties.
The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34268551</pmid><doi>10.1039/d1sm00706h</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4329-3248</orcidid><orcidid>https://orcid.org/0000-0003-4420-9714</orcidid><orcidid>https://orcid.org/0000-0003-3324-6800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2021-08, Vol.17 (32), p.7466-7475 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_webofscience_primary_000674168300001 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Chemistry Chemistry, Physical Droplets Energy balance Evaporation Impact velocity Jet interaction Materials Science Materials Science, Multidisciplinary Microfluidics Physical properties Physical Sciences Physics Physics, Multidisciplinary Pollutants Polymer Science Science & Technology Surfactants Technology Velocity Viscoelasticity |
title | Impact of a microfluidic jet on a pendant droplet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20a%20microfluidic%20jet%20on%20a%20pendant%20droplet&rft.jtitle=Soft%20matter&rft.au=Quetzeri-Santiago,%20Miguel%20A&rft.date=2021-08-28&rft.volume=17&rft.issue=32&rft.spage=7466&rft.epage=7475&rft.pages=7466-7475&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00706h&rft_dat=%3Cproquest_webof%3E2562239344%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562239344&rft_id=info:pmid/34268551&rfr_iscdi=true |