Impact of a microfluidic jet on a pendant droplet

High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-08, Vol.17 (32), p.7466-7475
Hauptverfasser: Quetzeri-Santiago, Miguel A, Hunter, Ian W, van der Meer, Devaraj, Fernandez Rivas, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7475
container_issue 32
container_start_page 7466
container_title Soft matter
container_volume 17
creator Quetzeri-Santiago, Miguel A
Hunter, Ian W
van der Meer, Devaraj
Fernandez Rivas, David
description High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties. The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects.
doi_str_mv 10.1039/d1sm00706h
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000674168300001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562239344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</originalsourceid><addsrcrecordid>eNqNkstPFTEUxhujEUQ37jWTuDGSC31Np92YkAsCCcQFmrhr-hrpzUw7tB0J_z3Fi-Nj5eqcnP6-09PzFYDXCB4gSMShRXmEsIPs-gnYRR2lK8Ypf7rk5NsOeJHzBkLCKWLPwQ6hmPG2RbsAnY-TMqWJfaOa0ZsU-2H21ptm42o11OrkglWhNDbFaXDlJXjWqyG7V49xD3z9dPJlfba6-Hx6vj66WBmKeVlpVO_qCGU94ZAJK7SuURuuIWXQOCQcE0pZxQnTWPBed7i1VDNlBGXIkj3wcdt3mvXorHGhJDXIKflRpTsZlZd_nwR_Lb_HH5KTDlPEa4P3jw1SvJldLnL02bhhUMHFOUvctlh0gglc0Xf_oJs4p1CfVymGMRGE0kp92FJ1Szkn1y_DICgfnJDH6OrypxNnFX775_gL-mv1FdjfArdOxz4b74JxCwYhZF01i5OawQea_z-99kUVH8M6zqFU6ZutNGWzKH7_GXIPssytCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562239344</pqid></control><display><type>article</type><title>Impact of a microfluidic jet on a pendant droplet</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Quetzeri-Santiago, Miguel A ; Hunter, Ian W ; van der Meer, Devaraj ; Fernandez Rivas, David</creator><creatorcontrib>Quetzeri-Santiago, Miguel A ; Hunter, Ian W ; van der Meer, Devaraj ; Fernandez Rivas, David</creatorcontrib><description>High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties. The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00706h</identifier><identifier>PMID: 34268551</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Chemistry ; Chemistry, Physical ; Droplets ; Energy balance ; Evaporation ; Impact velocity ; Jet interaction ; Materials Science ; Materials Science, Multidisciplinary ; Microfluidics ; Physical properties ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Pollutants ; Polymer Science ; Science &amp; Technology ; Surfactants ; Technology ; Velocity ; Viscoelasticity</subject><ispartof>Soft matter, 2021-08, Vol.17 (32), p.7466-7475</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674168300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</citedby><cites>FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</cites><orcidid>0000-0003-4329-3248 ; 0000-0003-4420-9714 ; 0000-0003-3324-6800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34268551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quetzeri-Santiago, Miguel A</creatorcontrib><creatorcontrib>Hunter, Ian W</creatorcontrib><creatorcontrib>van der Meer, Devaraj</creatorcontrib><creatorcontrib>Fernandez Rivas, David</creatorcontrib><title>Impact of a microfluidic jet on a pendant droplet</title><title>Soft matter</title><addtitle>SOFT MATTER</addtitle><addtitle>Soft Matter</addtitle><description>High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties. The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Droplets</subject><subject>Energy balance</subject><subject>Evaporation</subject><subject>Impact velocity</subject><subject>Jet interaction</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Microfluidics</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Pollutants</subject><subject>Polymer Science</subject><subject>Science &amp; Technology</subject><subject>Surfactants</subject><subject>Technology</subject><subject>Velocity</subject><subject>Viscoelasticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkstPFTEUxhujEUQ37jWTuDGSC31Np92YkAsCCcQFmrhr-hrpzUw7tB0J_z3Fi-Nj5eqcnP6-09PzFYDXCB4gSMShRXmEsIPs-gnYRR2lK8Ypf7rk5NsOeJHzBkLCKWLPwQ6hmPG2RbsAnY-TMqWJfaOa0ZsU-2H21ptm42o11OrkglWhNDbFaXDlJXjWqyG7V49xD3z9dPJlfba6-Hx6vj66WBmKeVlpVO_qCGU94ZAJK7SuURuuIWXQOCQcE0pZxQnTWPBed7i1VDNlBGXIkj3wcdt3mvXorHGhJDXIKflRpTsZlZd_nwR_Lb_HH5KTDlPEa4P3jw1SvJldLnL02bhhUMHFOUvctlh0gglc0Xf_oJs4p1CfVymGMRGE0kp92FJ1Szkn1y_DICgfnJDH6OrypxNnFX775_gL-mv1FdjfArdOxz4b74JxCwYhZF01i5OawQea_z-99kUVH8M6zqFU6ZutNGWzKH7_GXIPssytCw</recordid><startdate>20210828</startdate><enddate>20210828</enddate><creator>Quetzeri-Santiago, Miguel A</creator><creator>Hunter, Ian W</creator><creator>van der Meer, Devaraj</creator><creator>Fernandez Rivas, David</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4329-3248</orcidid><orcidid>https://orcid.org/0000-0003-4420-9714</orcidid><orcidid>https://orcid.org/0000-0003-3324-6800</orcidid></search><sort><creationdate>20210828</creationdate><title>Impact of a microfluidic jet on a pendant droplet</title><author>Quetzeri-Santiago, Miguel A ; Hunter, Ian W ; van der Meer, Devaraj ; Fernandez Rivas, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b18417346f38069d9bb806bc8b0460ce19e69aada836b298fb725d4b6ac9461d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Droplets</topic><topic>Energy balance</topic><topic>Evaporation</topic><topic>Impact velocity</topic><topic>Jet interaction</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Microfluidics</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Pollutants</topic><topic>Polymer Science</topic><topic>Science &amp; Technology</topic><topic>Surfactants</topic><topic>Technology</topic><topic>Velocity</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quetzeri-Santiago, Miguel A</creatorcontrib><creatorcontrib>Hunter, Ian W</creatorcontrib><creatorcontrib>van der Meer, Devaraj</creatorcontrib><creatorcontrib>Fernandez Rivas, David</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quetzeri-Santiago, Miguel A</au><au>Hunter, Ian W</au><au>van der Meer, Devaraj</au><au>Fernandez Rivas, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of a microfluidic jet on a pendant droplet</atitle><jtitle>Soft matter</jtitle><stitle>SOFT MATTER</stitle><addtitle>Soft Matter</addtitle><date>2021-08-28</date><risdate>2021</risdate><volume>17</volume><issue>32</issue><spage>7466</spage><epage>7475</epage><pages>7466-7475</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is created, and, above a critical impact velocity, the jet traverses the entire droplet. We predict the critical traversing velocity (i) from a simple energy balance and (ii) by comparing the Young-Laplace and dynamic pressures in the cavity that is created during the impact. We contrast the model predictions against experiments, in which we vary the liquid properties of the pendant droplet and find good agreement. In addition, we assess how surfactants and viscoelastic effects influence the critical impact velocity. Our results increase the knowledge of the jet interaction with materials of well-known physical properties. The impact of microscopic jets on pendant liquid droplets is studied experimentally. The critical traversing jet velocity is predicted, which explains how the phenomena are governed by the impact inertia, the surface tension of the droplet and viscoelastic effects.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34268551</pmid><doi>10.1039/d1sm00706h</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4329-3248</orcidid><orcidid>https://orcid.org/0000-0003-4420-9714</orcidid><orcidid>https://orcid.org/0000-0003-3324-6800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-08, Vol.17 (32), p.7466-7475
issn 1744-683X
1744-6848
language eng
recordid cdi_webofscience_primary_000674168300001
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Chemistry
Chemistry, Physical
Droplets
Energy balance
Evaporation
Impact velocity
Jet interaction
Materials Science
Materials Science, Multidisciplinary
Microfluidics
Physical properties
Physical Sciences
Physics
Physics, Multidisciplinary
Pollutants
Polymer Science
Science & Technology
Surfactants
Technology
Velocity
Viscoelasticity
title Impact of a microfluidic jet on a pendant droplet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20a%20microfluidic%20jet%20on%20a%20pendant%20droplet&rft.jtitle=Soft%20matter&rft.au=Quetzeri-Santiago,%20Miguel%20A&rft.date=2021-08-28&rft.volume=17&rft.issue=32&rft.spage=7466&rft.epage=7475&rft.pages=7466-7475&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00706h&rft_dat=%3Cproquest_webof%3E2562239344%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562239344&rft_id=info:pmid/34268551&rfr_iscdi=true