Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches
Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2021-07, Vol.136 (7), p.719, Article 719 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 719 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Kurochkin, Maxim A. Fedosov, Ivan V. Postnov, Dmitry E. |
description | Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain. |
doi_str_mv | 10.1140/epjp/s13360-021-01700-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000672708600005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920622753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhoMoWLS_wQWPsna_kjTepPhRKOihel0m2dmakiZxN2npv3fbivWme9lheN95Z54ouuLslnPFRtgu25HnUiaMMsEp4yljNDuJBoJnjMZKqdNf9Xk09H7JwlMZV5kaROt5swFnSAU5VtQ6RFKuYFHWC9JYkjsoa7IGX_QVdL3DO2IdrJDmW7oviG-hK6EiYKDtyjUSW1adC72mJlCbY_91-k6gbV0DxQf6y-jMQuVx-P1fRG-PD_PJM529PE0n9zNaSKk6agFTGWO4TrCEy4KbcGTCjVWgIMusQpszlKnKQTCe56owJobYCMMTNIDyIro-zA3Bnz36Ti-b3tUhUosszBQijWVQpQdV4RrvHVrdukDBbTVnesdZ7zjrA2cdVtB7zjoLzvHBucG8sb4osS7wxx04J6lI2TjZIY8nZbcHM2n6ugvWm_9bj0E-KOoFuuMhf-34BRrGps0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920622753</pqid></control><display><type>article</type><title>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kurochkin, Maxim A. ; Fedosov, Ivan V. ; Postnov, Dmitry E.</creator><creatorcontrib>Kurochkin, Maxim A. ; Fedosov, Ivan V. ; Postnov, Dmitry E.</creatorcontrib><description>Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01700-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Biological models (mathematics) ; Blood ; Blood flow ; Blood vessels ; Brain ; Capillaries ; Capillary flow ; Complex Systems ; Condensed Matter Physics ; Erythrocytes ; Filtration ; Flow velocity ; Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain ; Image acquisition ; Labels ; Laboratory animals ; Mathematical and Computational Physics ; Methods ; Molecular ; Optical and Plasma Physics ; Particle image velocimetry ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Multidisciplinary ; Regular Article ; Science & Technology ; Spatial filtering ; Theoretical ; Visualization</subject><ispartof>European physical journal plus, 2021-07, Vol.136 (7), p.719, Article 719</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672708600005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</citedby><cites>FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</cites><orcidid>0000-0001-6688-4724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01700-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920622753?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21395,27931,27932,33751,39265,41495,42564,43812,51326,64392,64396,72476</link.rule.ids></links><search><creatorcontrib>Kurochkin, Maxim A.</creatorcontrib><creatorcontrib>Fedosov, Ivan V.</creatorcontrib><creatorcontrib>Postnov, Dmitry E.</creatorcontrib><title>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><addtitle>EUR PHYS J PLUS</addtitle><description>Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Biological models (mathematics)</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Capillaries</subject><subject>Capillary flow</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Erythrocytes</subject><subject>Filtration</subject><subject>Flow velocity</subject><subject>Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain</subject><subject>Image acquisition</subject><subject>Labels</subject><subject>Laboratory animals</subject><subject>Mathematical and Computational Physics</subject><subject>Methods</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle image velocimetry</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Multidisciplinary</subject><subject>Regular Article</subject><subject>Science & Technology</subject><subject>Spatial filtering</subject><subject>Theoretical</subject><subject>Visualization</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE1Lw0AQhoMoWLS_wQWPsna_kjTepPhRKOihel0m2dmakiZxN2npv3fbivWme9lheN95Z54ouuLslnPFRtgu25HnUiaMMsEp4yljNDuJBoJnjMZKqdNf9Xk09H7JwlMZV5kaROt5swFnSAU5VtQ6RFKuYFHWC9JYkjsoa7IGX_QVdL3DO2IdrJDmW7oviG-hK6EiYKDtyjUSW1adC72mJlCbY_91-k6gbV0DxQf6y-jMQuVx-P1fRG-PD_PJM529PE0n9zNaSKk6agFTGWO4TrCEy4KbcGTCjVWgIMusQpszlKnKQTCe56owJobYCMMTNIDyIro-zA3Bnz36Ti-b3tUhUosszBQijWVQpQdV4RrvHVrdukDBbTVnesdZ7zjrA2cdVtB7zjoLzvHBucG8sb4osS7wxx04J6lI2TjZIY8nZbcHM2n6ugvWm_9bj0E-KOoFuuMhf-34BRrGps0</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kurochkin, Maxim A.</creator><creator>Fedosov, Ivan V.</creator><creator>Postnov, Dmitry E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6688-4724</orcidid></search><sort><creationdate>20210701</creationdate><title>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</title><author>Kurochkin, Maxim A. ; Fedosov, Ivan V. ; Postnov, Dmitry E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Biological models (mathematics)</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Capillaries</topic><topic>Capillary flow</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Erythrocytes</topic><topic>Filtration</topic><topic>Flow velocity</topic><topic>Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain</topic><topic>Image acquisition</topic><topic>Labels</topic><topic>Laboratory animals</topic><topic>Mathematical and Computational Physics</topic><topic>Methods</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle image velocimetry</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Multidisciplinary</topic><topic>Regular Article</topic><topic>Science & Technology</topic><topic>Spatial filtering</topic><topic>Theoretical</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurochkin, Maxim A.</creatorcontrib><creatorcontrib>Fedosov, Ivan V.</creatorcontrib><creatorcontrib>Postnov, Dmitry E.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurochkin, Maxim A.</au><au>Fedosov, Ivan V.</au><au>Postnov, Dmitry E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><stitle>EUR PHYS J PLUS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>136</volume><issue>7</issue><spage>719</spage><pages>719-</pages><artnum>719</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01700-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6688-4724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-07, Vol.136 (7), p.719, Article 719 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_webofscience_primary_000672708600005 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Applied and Technical Physics Atomic Biological models (mathematics) Blood Blood flow Blood vessels Brain Capillaries Capillary flow Complex Systems Condensed Matter Physics Erythrocytes Filtration Flow velocity Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain Image acquisition Labels Laboratory animals Mathematical and Computational Physics Methods Molecular Optical and Plasma Physics Particle image velocimetry Physical Sciences Physics Physics and Astronomy Physics, Multidisciplinary Regular Article Science & Technology Spatial filtering Theoretical Visualization |
title | Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20label-free%20imaging%20of%20brain%20vasculature:%20frame-by-frame%20spatial%20adaptive%20filtration%20and%20adaptive%20PIV%20approaches&rft.jtitle=European%20physical%20journal%20plus&rft.au=Kurochkin,%20Maxim%20A.&rft.date=2021-07-01&rft.volume=136&rft.issue=7&rft.spage=719&rft.pages=719-&rft.artnum=719&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01700-9&rft_dat=%3Cproquest_webof%3E2920622753%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920622753&rft_id=info:pmid/&rfr_iscdi=true |