Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches

Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2021-07, Vol.136 (7), p.719, Article 719
Hauptverfasser: Kurochkin, Maxim A., Fedosov, Ivan V., Postnov, Dmitry E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 719
container_title European physical journal plus
container_volume 136
creator Kurochkin, Maxim A.
Fedosov, Ivan V.
Postnov, Dmitry E.
description Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain.
doi_str_mv 10.1140/epjp/s13360-021-01700-9
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000672708600005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920622753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhoMoWLS_wQWPsna_kjTepPhRKOihel0m2dmakiZxN2npv3fbivWme9lheN95Z54ouuLslnPFRtgu25HnUiaMMsEp4yljNDuJBoJnjMZKqdNf9Xk09H7JwlMZV5kaROt5swFnSAU5VtQ6RFKuYFHWC9JYkjsoa7IGX_QVdL3DO2IdrJDmW7oviG-hK6EiYKDtyjUSW1adC72mJlCbY_91-k6gbV0DxQf6y-jMQuVx-P1fRG-PD_PJM529PE0n9zNaSKk6agFTGWO4TrCEy4KbcGTCjVWgIMusQpszlKnKQTCe56owJobYCMMTNIDyIro-zA3Bnz36Ti-b3tUhUosszBQijWVQpQdV4RrvHVrdukDBbTVnesdZ7zjrA2cdVtB7zjoLzvHBucG8sb4osS7wxx04J6lI2TjZIY8nZbcHM2n6ugvWm_9bj0E-KOoFuuMhf-34BRrGps0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920622753</pqid></control><display><type>article</type><title>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kurochkin, Maxim A. ; Fedosov, Ivan V. ; Postnov, Dmitry E.</creator><creatorcontrib>Kurochkin, Maxim A. ; Fedosov, Ivan V. ; Postnov, Dmitry E.</creatorcontrib><description>Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01700-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Biological models (mathematics) ; Blood ; Blood flow ; Blood vessels ; Brain ; Capillaries ; Capillary flow ; Complex Systems ; Condensed Matter Physics ; Erythrocytes ; Filtration ; Flow velocity ; Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain ; Image acquisition ; Labels ; Laboratory animals ; Mathematical and Computational Physics ; Methods ; Molecular ; Optical and Plasma Physics ; Particle image velocimetry ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Multidisciplinary ; Regular Article ; Science &amp; Technology ; Spatial filtering ; Theoretical ; Visualization</subject><ispartof>European physical journal plus, 2021-07, Vol.136 (7), p.719, Article 719</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672708600005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</citedby><cites>FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</cites><orcidid>0000-0001-6688-4724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01700-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920622753?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21395,27931,27932,33751,39265,41495,42564,43812,51326,64392,64396,72476</link.rule.ids></links><search><creatorcontrib>Kurochkin, Maxim A.</creatorcontrib><creatorcontrib>Fedosov, Ivan V.</creatorcontrib><creatorcontrib>Postnov, Dmitry E.</creatorcontrib><title>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><addtitle>EUR PHYS J PLUS</addtitle><description>Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Biological models (mathematics)</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Capillaries</subject><subject>Capillary flow</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Erythrocytes</subject><subject>Filtration</subject><subject>Flow velocity</subject><subject>Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain</subject><subject>Image acquisition</subject><subject>Labels</subject><subject>Laboratory animals</subject><subject>Mathematical and Computational Physics</subject><subject>Methods</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle image velocimetry</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Multidisciplinary</subject><subject>Regular Article</subject><subject>Science &amp; Technology</subject><subject>Spatial filtering</subject><subject>Theoretical</subject><subject>Visualization</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE1Lw0AQhoMoWLS_wQWPsna_kjTepPhRKOihel0m2dmakiZxN2npv3fbivWme9lheN95Z54ouuLslnPFRtgu25HnUiaMMsEp4yljNDuJBoJnjMZKqdNf9Xk09H7JwlMZV5kaROt5swFnSAU5VtQ6RFKuYFHWC9JYkjsoa7IGX_QVdL3DO2IdrJDmW7oviG-hK6EiYKDtyjUSW1adC72mJlCbY_91-k6gbV0DxQf6y-jMQuVx-P1fRG-PD_PJM529PE0n9zNaSKk6agFTGWO4TrCEy4KbcGTCjVWgIMusQpszlKnKQTCe56owJobYCMMTNIDyIro-zA3Bnz36Ti-b3tUhUosszBQijWVQpQdV4RrvHVrdukDBbTVnesdZ7zjrA2cdVtB7zjoLzvHBucG8sb4osS7wxx04J6lI2TjZIY8nZbcHM2n6ugvWm_9bj0E-KOoFuuMhf-34BRrGps0</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kurochkin, Maxim A.</creator><creator>Fedosov, Ivan V.</creator><creator>Postnov, Dmitry E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6688-4724</orcidid></search><sort><creationdate>20210701</creationdate><title>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</title><author>Kurochkin, Maxim A. ; Fedosov, Ivan V. ; Postnov, Dmitry E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fae735e36020613c1d02161df4a4a99f4efb0e374ba201bb4cdd5a5d2d16edae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Biological models (mathematics)</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Capillaries</topic><topic>Capillary flow</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Erythrocytes</topic><topic>Filtration</topic><topic>Flow velocity</topic><topic>Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain</topic><topic>Image acquisition</topic><topic>Labels</topic><topic>Laboratory animals</topic><topic>Mathematical and Computational Physics</topic><topic>Methods</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle image velocimetry</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Multidisciplinary</topic><topic>Regular Article</topic><topic>Science &amp; Technology</topic><topic>Spatial filtering</topic><topic>Theoretical</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurochkin, Maxim A.</creatorcontrib><creatorcontrib>Fedosov, Ivan V.</creatorcontrib><creatorcontrib>Postnov, Dmitry E.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurochkin, Maxim A.</au><au>Fedosov, Ivan V.</au><au>Postnov, Dmitry E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><stitle>EUR PHYS J PLUS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>136</volume><issue>7</issue><spage>719</spage><pages>719-</pages><artnum>719</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Visualization of the smallest blood vessels in the brain, capillaries, and assessment of the blood flow rate in them is important in many physiological studies. However, it is in this case that conventional label-free imaging methods fail since both the number and velocity of red blood cells in the capillaries are often too low. We present a label-free method of capillary blood flow analysis aimed at detecting and counting each single red blood cell in order to build a very detailed map of the vasculature. Such a map, in turn, enables us to more effectively apply the Particle Image Velocimetry method and make label-free blood flow velocity measurements in the smallest capillaries. Technically, our method is based on the adaptive spatial filtering of each frame of the acquired series of images using adaptive Niblack filtration. As a result of frame-by-frame filtering, we can differentiate single moving RBCs from static image artifacts having a similar size and brightness. We show the method applicability using two different biological models, specifically, the chicken embryo and the mouse brain.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01700-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6688-4724</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2021-07, Vol.136 (7), p.719, Article 719
issn 2190-5444
2190-5444
language eng
recordid cdi_webofscience_primary_000672708600005
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied and Technical Physics
Atomic
Biological models (mathematics)
Blood
Blood flow
Blood vessels
Brain
Capillaries
Capillary flow
Complex Systems
Condensed Matter Physics
Erythrocytes
Filtration
Flow velocity
Focus Point on Breakthrough Optics- and Complex Systems-based Technologies of Modulation of Drainage and Clearing Functions of the Brain
Image acquisition
Labels
Laboratory animals
Mathematical and Computational Physics
Methods
Molecular
Optical and Plasma Physics
Particle image velocimetry
Physical Sciences
Physics
Physics and Astronomy
Physics, Multidisciplinary
Regular Article
Science & Technology
Spatial filtering
Theoretical
Visualization
title Toward label-free imaging of brain vasculature: frame-by-frame spatial adaptive filtration and adaptive PIV approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20label-free%20imaging%20of%20brain%20vasculature:%20frame-by-frame%20spatial%20adaptive%20filtration%20and%20adaptive%20PIV%20approaches&rft.jtitle=European%20physical%20journal%20plus&rft.au=Kurochkin,%20Maxim%20A.&rft.date=2021-07-01&rft.volume=136&rft.issue=7&rft.spage=719&rft.pages=719-&rft.artnum=719&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01700-9&rft_dat=%3Cproquest_webof%3E2920622753%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920622753&rft_id=info:pmid/&rfr_iscdi=true