Nanometric cutting mechanism of silicon carbide
Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting...
Gespeichert in:
Veröffentlicht in: | CIRP annals 2021, Vol.70 (1), p.29-32 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | CIRP annals |
container_volume | 70 |
creator | Wang, Jinshi Fang, Fengzhou |
description | Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach. |
doi_str_mv | 10.1016/j.cirp.2021.04.068 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000672386800008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007850621000925</els_id><sourcerecordid>S0007850621000925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKtfwNPeZbeTzd8FL7JoFYpe9Bw22aymdDclSRW_vSktHkXmMMPwfsO8h9A1hgoD5ot1ZVzYVjXUuAJaAZcnaIZFzUvgQE_RDABEKRnwc3QR4xqAMRD1DC2eu8mPNgVnCrNLyU3vxWjNRze5OBZ-KKLbOOOnwnRBu95eorOh20R7dexz9PZw_9o-lquX5VN7tyoNAUilxURLpg3UjRCEc9wJTdjQE8EosIbiXA2GRlpr85IwwynTlMtGY03ZQOaoPtw1wccY7KC2wY1d-FYY1N6yWqu9ZbW3rICqbDlD8gB9We2HaJydjP0FcwRc1ERymSeQrUtdcn5q_W5KGb35P5rVtwe1zRF8OhvUkehdsCap3ru__vwBR5Z-tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanometric cutting mechanism of silicon carbide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Jinshi ; Fang, Fengzhou</creator><creatorcontrib>Wang, Jinshi ; Fang, Fengzhou</creatorcontrib><description>Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach.</description><identifier>ISSN: 0007-8506</identifier><identifier>EISSN: 1726-0604</identifier><identifier>DOI: 10.1016/j.cirp.2021.04.068</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier Ltd</publisher><subject>Cutting ; Engineering ; Engineering, Industrial ; Engineering, Manufacturing ; Mechanism ; Science & Technology ; Silicon carbide ; Technology</subject><ispartof>CIRP annals, 2021, Vol.70 (1), p.29-32</ispartof><rights>2021 CIRP</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672386800008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</citedby><cites>FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</cites><orcidid>0000-0002-8716-5988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cirp.2021.04.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Jinshi</creatorcontrib><creatorcontrib>Fang, Fengzhou</creatorcontrib><title>Nanometric cutting mechanism of silicon carbide</title><title>CIRP annals</title><addtitle>CIRP ANN-MANUF TECHN</addtitle><description>Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach.</description><subject>Cutting</subject><subject>Engineering</subject><subject>Engineering, Industrial</subject><subject>Engineering, Manufacturing</subject><subject>Mechanism</subject><subject>Science & Technology</subject><subject>Silicon carbide</subject><subject>Technology</subject><issn>0007-8506</issn><issn>1726-0604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE9LAzEQxYMoWKtfwNPeZbeTzd8FL7JoFYpe9Bw22aymdDclSRW_vSktHkXmMMPwfsO8h9A1hgoD5ot1ZVzYVjXUuAJaAZcnaIZFzUvgQE_RDABEKRnwc3QR4xqAMRD1DC2eu8mPNgVnCrNLyU3vxWjNRze5OBZ-KKLbOOOnwnRBu95eorOh20R7dexz9PZw_9o-lquX5VN7tyoNAUilxURLpg3UjRCEc9wJTdjQE8EosIbiXA2GRlpr85IwwynTlMtGY03ZQOaoPtw1wccY7KC2wY1d-FYY1N6yWqu9ZbW3rICqbDlD8gB9We2HaJydjP0FcwRc1ERymSeQrUtdcn5q_W5KGb35P5rVtwe1zRF8OhvUkehdsCap3ru__vwBR5Z-tQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Jinshi</creator><creator>Fang, Fengzhou</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8716-5988</orcidid></search><sort><creationdate>2021</creationdate><title>Nanometric cutting mechanism of silicon carbide</title><author>Wang, Jinshi ; Fang, Fengzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cutting</topic><topic>Engineering</topic><topic>Engineering, Industrial</topic><topic>Engineering, Manufacturing</topic><topic>Mechanism</topic><topic>Science & Technology</topic><topic>Silicon carbide</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinshi</creatorcontrib><creatorcontrib>Fang, Fengzhou</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>CIRP annals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinshi</au><au>Fang, Fengzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanometric cutting mechanism of silicon carbide</atitle><jtitle>CIRP annals</jtitle><stitle>CIRP ANN-MANUF TECHN</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><issue>1</issue><spage>29</spage><epage>32</epage><pages>29-32</pages><issn>0007-8506</issn><eissn>1726-0604</eissn><abstract>Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach.</abstract><cop>AMSTERDAM</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cirp.2021.04.068</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8716-5988</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-8506 |
ispartof | CIRP annals, 2021, Vol.70 (1), p.29-32 |
issn | 0007-8506 1726-0604 |
language | eng |
recordid | cdi_webofscience_primary_000672386800008 |
source | Access via ScienceDirect (Elsevier) |
subjects | Cutting Engineering Engineering, Industrial Engineering, Manufacturing Mechanism Science & Technology Silicon carbide Technology |
title | Nanometric cutting mechanism of silicon carbide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanometric%20cutting%20mechanism%20of%20silicon%20carbide&rft.jtitle=CIRP%20annals&rft.au=Wang,%20Jinshi&rft.date=2021&rft.volume=70&rft.issue=1&rft.spage=29&rft.epage=32&rft.pages=29-32&rft.issn=0007-8506&rft.eissn=1726-0604&rft_id=info:doi/10.1016/j.cirp.2021.04.068&rft_dat=%3Celsevier_webof%3ES0007850621000925%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0007850621000925&rfr_iscdi=true |