Nanometric cutting mechanism of silicon carbide

Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CIRP annals 2021, Vol.70 (1), p.29-32
Hauptverfasser: Wang, Jinshi, Fang, Fengzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 29
container_title CIRP annals
container_volume 70
creator Wang, Jinshi
Fang, Fengzhou
description Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach.
doi_str_mv 10.1016/j.cirp.2021.04.068
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000672386800008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007850621000925</els_id><sourcerecordid>S0007850621000925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKtfwNPeZbeTzd8FL7JoFYpe9Bw22aymdDclSRW_vSktHkXmMMPwfsO8h9A1hgoD5ot1ZVzYVjXUuAJaAZcnaIZFzUvgQE_RDABEKRnwc3QR4xqAMRD1DC2eu8mPNgVnCrNLyU3vxWjNRze5OBZ-KKLbOOOnwnRBu95eorOh20R7dexz9PZw_9o-lquX5VN7tyoNAUilxURLpg3UjRCEc9wJTdjQE8EosIbiXA2GRlpr85IwwynTlMtGY03ZQOaoPtw1wccY7KC2wY1d-FYY1N6yWqu9ZbW3rICqbDlD8gB9We2HaJydjP0FcwRc1ERymSeQrUtdcn5q_W5KGb35P5rVtwe1zRF8OhvUkehdsCap3ru__vwBR5Z-tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanometric cutting mechanism of silicon carbide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Jinshi ; Fang, Fengzhou</creator><creatorcontrib>Wang, Jinshi ; Fang, Fengzhou</creatorcontrib><description>Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach.</description><identifier>ISSN: 0007-8506</identifier><identifier>EISSN: 1726-0604</identifier><identifier>DOI: 10.1016/j.cirp.2021.04.068</identifier><language>eng</language><publisher>AMSTERDAM: Elsevier Ltd</publisher><subject>Cutting ; Engineering ; Engineering, Industrial ; Engineering, Manufacturing ; Mechanism ; Science &amp; Technology ; Silicon carbide ; Technology</subject><ispartof>CIRP annals, 2021, Vol.70 (1), p.29-32</ispartof><rights>2021 CIRP</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672386800008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</citedby><cites>FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</cites><orcidid>0000-0002-8716-5988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cirp.2021.04.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Jinshi</creatorcontrib><creatorcontrib>Fang, Fengzhou</creatorcontrib><title>Nanometric cutting mechanism of silicon carbide</title><title>CIRP annals</title><addtitle>CIRP ANN-MANUF TECHN</addtitle><description>Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach.</description><subject>Cutting</subject><subject>Engineering</subject><subject>Engineering, Industrial</subject><subject>Engineering, Manufacturing</subject><subject>Mechanism</subject><subject>Science &amp; Technology</subject><subject>Silicon carbide</subject><subject>Technology</subject><issn>0007-8506</issn><issn>1726-0604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE9LAzEQxYMoWKtfwNPeZbeTzd8FL7JoFYpe9Bw22aymdDclSRW_vSktHkXmMMPwfsO8h9A1hgoD5ot1ZVzYVjXUuAJaAZcnaIZFzUvgQE_RDABEKRnwc3QR4xqAMRD1DC2eu8mPNgVnCrNLyU3vxWjNRze5OBZ-KKLbOOOnwnRBu95eorOh20R7dexz9PZw_9o-lquX5VN7tyoNAUilxURLpg3UjRCEc9wJTdjQE8EosIbiXA2GRlpr85IwwynTlMtGY03ZQOaoPtw1wccY7KC2wY1d-FYY1N6yWqu9ZbW3rICqbDlD8gB9We2HaJydjP0FcwRc1ERymSeQrUtdcn5q_W5KGb35P5rVtwe1zRF8OhvUkehdsCap3ru__vwBR5Z-tQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Jinshi</creator><creator>Fang, Fengzhou</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8716-5988</orcidid></search><sort><creationdate>2021</creationdate><title>Nanometric cutting mechanism of silicon carbide</title><author>Wang, Jinshi ; Fang, Fengzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-e13b85bc029773661a7b35fd37540594141491098eeed3735c645b4689b1b45f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cutting</topic><topic>Engineering</topic><topic>Engineering, Industrial</topic><topic>Engineering, Manufacturing</topic><topic>Mechanism</topic><topic>Science &amp; Technology</topic><topic>Silicon carbide</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinshi</creatorcontrib><creatorcontrib>Fang, Fengzhou</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>CIRP annals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinshi</au><au>Fang, Fengzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanometric cutting mechanism of silicon carbide</atitle><jtitle>CIRP annals</jtitle><stitle>CIRP ANN-MANUF TECHN</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><issue>1</issue><spage>29</spage><epage>32</epage><pages>29-32</pages><issn>0007-8506</issn><eissn>1726-0604</eissn><abstract>Ductile to brittle transition is critical to achieve nanometric surfaces in the ultraprecision diamond cutting of silicon carbide. Although atomic simulations have long been used to better understand this mechanism, the extremely small model scale limits its capability in matching the actual cutting process. To overcome this serious issue, an enhanced molecular dynamics method is proposed in this study, which successfully predicts and clarifies the onset of brittle regime machining, and indicates the essential roles of dislocation and the shear band. The experimental results validate the effectiveness of this modelling approach.</abstract><cop>AMSTERDAM</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cirp.2021.04.068</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8716-5988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0007-8506
ispartof CIRP annals, 2021, Vol.70 (1), p.29-32
issn 0007-8506
1726-0604
language eng
recordid cdi_webofscience_primary_000672386800008
source Access via ScienceDirect (Elsevier)
subjects Cutting
Engineering
Engineering, Industrial
Engineering, Manufacturing
Mechanism
Science & Technology
Silicon carbide
Technology
title Nanometric cutting mechanism of silicon carbide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanometric%20cutting%20mechanism%20of%20silicon%20carbide&rft.jtitle=CIRP%20annals&rft.au=Wang,%20Jinshi&rft.date=2021&rft.volume=70&rft.issue=1&rft.spage=29&rft.epage=32&rft.pages=29-32&rft.issn=0007-8506&rft.eissn=1726-0604&rft_id=info:doi/10.1016/j.cirp.2021.04.068&rft_dat=%3Celsevier_webof%3ES0007850621000925%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0007850621000925&rfr_iscdi=true