Self-assembly of N-heterocyclic carbenes on Au(111)

Although the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-06, Vol.12 (1), p.4034-4034, Article 4034
Hauptverfasser: Inayeh, Alex, Groome, Ryan R. K., Singh, Ishwar, Veinot, Alex J., de Lima, Felipe Crasto, Miwa, Roberto H., Crudden, Cathleen M., McLean, Alastair B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered. Herein, we describe the effect of NHC structure, surface coverage, and substrate temperature on mobility, thermal stability, NHC surface geometry, and self-assembly. Analysis of NHC adsorption and self-assembly by scanning tunneling microscopy and density functional theory have revealed the importance of NHC-surface interactions and attractive NHC-NHC interactions on NHC monolayer structures. A remarkable way these interactions manifest is the need for a threshold NHC surface coverage to produce upright, adatom-mediated adsorption motifs with low surface diffusion. NHC wingtip structure is also critical, with primary substituents leading to the formation of flat-lying NHC 2 Au complexes, which have high mobility when isolated, but self-assemble into stable ordered lattices at higher surface concentrations. These and other studies of NHC surface chemistry will be crucial for the success of these next-generation monolayers. Although N-heterocyclic carbenes (NHCs) are a promising class of ligands for forming robust self-assembled monolayers on metals, many questions remain about their behavior on surfaces. Here, the authors address these fundamental questions—such as the factors controlling NHC orientation, mobility, and ability to self-assemble—through an in-depth examination of NHC overlayers on Au(111).
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23940-0