Nb2O5 as a radical modulator during oxidative dehydrogenation and as a Lewis acid promoter in CO2 assisted dehydrogenation of octane over confined 2D engineered NiO-Nb2O5-Al2O3
Mesoporous 2D NiO-Nb2O5-Al2O3 nanorods (and, for the first time, template free ordered mesoporous alumina (OMA)) were prepared via glycol-thermal synthesis for the direct transformation of octane to octenes via CO2 assisted dehydrogenation (CO2-DH). Nb2O5 addition modified the confinement effect and...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2021-08, Vol.11 (15), p.5321-5334 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5334 |
---|---|
container_issue | 15 |
container_start_page | 5321 |
container_title | Catalysis science & technology |
container_volume | 11 |
creator | Farahani, Majid D. Fadlalla, Mohamed I. Ezekiel, Itegbeyogene P. Osman, Nadir S. E. Moyo, Thomas Claeys, Michael Friedrich, Holger B. |
description | Mesoporous 2D NiO-Nb2O5-Al2O3 nanorods (and, for the first time, template free ordered mesoporous alumina (OMA)) were prepared via glycol-thermal synthesis for the direct transformation of octane to octenes via CO2 assisted dehydrogenation (CO2-DH). Nb2O5 addition modified the confinement effect and metal support interaction between NiO and alumina. The catalyst with an optimal confinement effect between all metal oxides in the nanorod composite provided 6% steady state n-octane conversion with similar to 80% selectivity to C-8 aromatics and olefins. Characterisation data of the fresh and used catalysts, obtained from CO2-DH as well as reverse water gas shift (RWGS) reactions, was used to identify the possible mechanism over this catalyst. Nb2O5 addition to the NiO catalyst facilitates CO2-DH by promoting RWGS and reverse-Boudouard reactions by forming O* from CO2 dissociation. Also, application of these materials for the oxidative dehydrogenation of n-octane and propane using air revealed the contribution of a radical mechanism. |
doi_str_mv | 10.1039/d1cy00550b |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000670553400001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557240421</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-42fae93d3d5291b691869868b9fab209b41d6b86e50c2feba4d9918e08efda8b3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRSMEEhV0wxdYYokCfiWNl1V4SlWzgXVkx5PiKrWL47T0r_hE3BaxYcNsZq58ZmzfSZIrgm8JZuJOk2aHcZZhdZKMKOY85ZOcnP7WGTtPxn2_xDG4ILigo-RrrmiVIdkjibzUppEdWjk9dDI4j_TgjV0g92m0DGYDSMP7Tnu3ABu1s0hafeydwdbE3BiN1t6tXACPjEVlReN5b_oA-k-za5FrgrSA3CbijbOtsZGj9wjsIpbgo5qbKj08Mp12tGKXyVkrux7GP_kieXt8eC2f01n19FJOZ-maEBZSTlsJgmmmMyqIygUpclHkhRKtVBQLxYnOVZFDhhvagpJci8gALqDVslDsIrk-zo3f-RigD_XSDd7GK2uaZRPKMackUjdHagvKtX1jwDZQr71ZSb-ro8_5JC6E8b3le7r4P12acLCpdIMN7BuV3ZMl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557240421</pqid></control><display><type>article</type><title>Nb2O5 as a radical modulator during oxidative dehydrogenation and as a Lewis acid promoter in CO2 assisted dehydrogenation of octane over confined 2D engineered NiO-Nb2O5-Al2O3</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Farahani, Majid D. ; Fadlalla, Mohamed I. ; Ezekiel, Itegbeyogene P. ; Osman, Nadir S. E. ; Moyo, Thomas ; Claeys, Michael ; Friedrich, Holger B.</creator><creatorcontrib>Farahani, Majid D. ; Fadlalla, Mohamed I. ; Ezekiel, Itegbeyogene P. ; Osman, Nadir S. E. ; Moyo, Thomas ; Claeys, Michael ; Friedrich, Holger B.</creatorcontrib><description>Mesoporous 2D NiO-Nb2O5-Al2O3 nanorods (and, for the first time, template free ordered mesoporous alumina (OMA)) were prepared via glycol-thermal synthesis for the direct transformation of octane to octenes via CO2 assisted dehydrogenation (CO2-DH). Nb2O5 addition modified the confinement effect and metal support interaction between NiO and alumina. The catalyst with an optimal confinement effect between all metal oxides in the nanorod composite provided 6% steady state n-octane conversion with similar to 80% selectivity to C-8 aromatics and olefins. Characterisation data of the fresh and used catalysts, obtained from CO2-DH as well as reverse water gas shift (RWGS) reactions, was used to identify the possible mechanism over this catalyst. Nb2O5 addition to the NiO catalyst facilitates CO2-DH by promoting RWGS and reverse-Boudouard reactions by forming O* from CO2 dissociation. Also, application of these materials for the oxidative dehydrogenation of n-octane and propane using air revealed the contribution of a radical mechanism.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d1cy00550b</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Alkenes ; Aluminum oxide ; Carbon dioxide ; Catalysts ; Chemistry ; Chemistry, Physical ; Confinement ; Dehydrogenation ; Lewis acid ; Metal oxides ; Nanorods ; Nickel oxides ; Niobium oxides ; Physical Sciences ; Science & Technology ; Selectivity ; Water gas</subject><ispartof>Catalysis science & technology, 2021-08, Vol.11 (15), p.5321-5334</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000670553400001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p113t-42fae93d3d5291b691869868b9fab209b41d6b86e50c2feba4d9918e08efda8b3</cites><orcidid>0000-0002-1971-0120 ; 0000-0002-7145-5139 ; 0000-0002-5797-5023 ; 0000-0002-1329-0815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Farahani, Majid D.</creatorcontrib><creatorcontrib>Fadlalla, Mohamed I.</creatorcontrib><creatorcontrib>Ezekiel, Itegbeyogene P.</creatorcontrib><creatorcontrib>Osman, Nadir S. E.</creatorcontrib><creatorcontrib>Moyo, Thomas</creatorcontrib><creatorcontrib>Claeys, Michael</creatorcontrib><creatorcontrib>Friedrich, Holger B.</creatorcontrib><title>Nb2O5 as a radical modulator during oxidative dehydrogenation and as a Lewis acid promoter in CO2 assisted dehydrogenation of octane over confined 2D engineered NiO-Nb2O5-Al2O3</title><title>Catalysis science & technology</title><addtitle>CATAL SCI TECHNOL</addtitle><description>Mesoporous 2D NiO-Nb2O5-Al2O3 nanorods (and, for the first time, template free ordered mesoporous alumina (OMA)) were prepared via glycol-thermal synthesis for the direct transformation of octane to octenes via CO2 assisted dehydrogenation (CO2-DH). Nb2O5 addition modified the confinement effect and metal support interaction between NiO and alumina. The catalyst with an optimal confinement effect between all metal oxides in the nanorod composite provided 6% steady state n-octane conversion with similar to 80% selectivity to C-8 aromatics and olefins. Characterisation data of the fresh and used catalysts, obtained from CO2-DH as well as reverse water gas shift (RWGS) reactions, was used to identify the possible mechanism over this catalyst. Nb2O5 addition to the NiO catalyst facilitates CO2-DH by promoting RWGS and reverse-Boudouard reactions by forming O* from CO2 dissociation. Also, application of these materials for the oxidative dehydrogenation of n-octane and propane using air revealed the contribution of a radical mechanism.</description><subject>Alkenes</subject><subject>Aluminum oxide</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Confinement</subject><subject>Dehydrogenation</subject><subject>Lewis acid</subject><subject>Metal oxides</subject><subject>Nanorods</subject><subject>Nickel oxides</subject><subject>Niobium oxides</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Selectivity</subject><subject>Water gas</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkctOwzAQRSMEEhV0wxdYYokCfiWNl1V4SlWzgXVkx5PiKrWL47T0r_hE3BaxYcNsZq58ZmzfSZIrgm8JZuJOk2aHcZZhdZKMKOY85ZOcnP7WGTtPxn2_xDG4ILigo-RrrmiVIdkjibzUppEdWjk9dDI4j_TgjV0g92m0DGYDSMP7Tnu3ABu1s0hafeydwdbE3BiN1t6tXACPjEVlReN5b_oA-k-za5FrgrSA3CbijbOtsZGj9wjsIpbgo5qbKj08Mp12tGKXyVkrux7GP_kieXt8eC2f01n19FJOZ-maEBZSTlsJgmmmMyqIygUpclHkhRKtVBQLxYnOVZFDhhvagpJci8gALqDVslDsIrk-zo3f-RigD_XSDd7GK2uaZRPKMackUjdHagvKtX1jwDZQr71ZSb-ro8_5JC6E8b3le7r4P12acLCpdIMN7BuV3ZMl</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Farahani, Majid D.</creator><creator>Fadlalla, Mohamed I.</creator><creator>Ezekiel, Itegbeyogene P.</creator><creator>Osman, Nadir S. E.</creator><creator>Moyo, Thomas</creator><creator>Claeys, Michael</creator><creator>Friedrich, Holger B.</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1971-0120</orcidid><orcidid>https://orcid.org/0000-0002-7145-5139</orcidid><orcidid>https://orcid.org/0000-0002-5797-5023</orcidid><orcidid>https://orcid.org/0000-0002-1329-0815</orcidid></search><sort><creationdate>20210807</creationdate><title>Nb2O5 as a radical modulator during oxidative dehydrogenation and as a Lewis acid promoter in CO2 assisted dehydrogenation of octane over confined 2D engineered NiO-Nb2O5-Al2O3</title><author>Farahani, Majid D. ; Fadlalla, Mohamed I. ; Ezekiel, Itegbeyogene P. ; Osman, Nadir S. E. ; Moyo, Thomas ; Claeys, Michael ; Friedrich, Holger B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-42fae93d3d5291b691869868b9fab209b41d6b86e50c2feba4d9918e08efda8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkenes</topic><topic>Aluminum oxide</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Confinement</topic><topic>Dehydrogenation</topic><topic>Lewis acid</topic><topic>Metal oxides</topic><topic>Nanorods</topic><topic>Nickel oxides</topic><topic>Niobium oxides</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Selectivity</topic><topic>Water gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farahani, Majid D.</creatorcontrib><creatorcontrib>Fadlalla, Mohamed I.</creatorcontrib><creatorcontrib>Ezekiel, Itegbeyogene P.</creatorcontrib><creatorcontrib>Osman, Nadir S. E.</creatorcontrib><creatorcontrib>Moyo, Thomas</creatorcontrib><creatorcontrib>Claeys, Michael</creatorcontrib><creatorcontrib>Friedrich, Holger B.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farahani, Majid D.</au><au>Fadlalla, Mohamed I.</au><au>Ezekiel, Itegbeyogene P.</au><au>Osman, Nadir S. E.</au><au>Moyo, Thomas</au><au>Claeys, Michael</au><au>Friedrich, Holger B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nb2O5 as a radical modulator during oxidative dehydrogenation and as a Lewis acid promoter in CO2 assisted dehydrogenation of octane over confined 2D engineered NiO-Nb2O5-Al2O3</atitle><jtitle>Catalysis science & technology</jtitle><stitle>CATAL SCI TECHNOL</stitle><date>2021-08-07</date><risdate>2021</risdate><volume>11</volume><issue>15</issue><spage>5321</spage><epage>5334</epage><pages>5321-5334</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Mesoporous 2D NiO-Nb2O5-Al2O3 nanorods (and, for the first time, template free ordered mesoporous alumina (OMA)) were prepared via glycol-thermal synthesis for the direct transformation of octane to octenes via CO2 assisted dehydrogenation (CO2-DH). Nb2O5 addition modified the confinement effect and metal support interaction between NiO and alumina. The catalyst with an optimal confinement effect between all metal oxides in the nanorod composite provided 6% steady state n-octane conversion with similar to 80% selectivity to C-8 aromatics and olefins. Characterisation data of the fresh and used catalysts, obtained from CO2-DH as well as reverse water gas shift (RWGS) reactions, was used to identify the possible mechanism over this catalyst. Nb2O5 addition to the NiO catalyst facilitates CO2-DH by promoting RWGS and reverse-Boudouard reactions by forming O* from CO2 dissociation. Also, application of these materials for the oxidative dehydrogenation of n-octane and propane using air revealed the contribution of a radical mechanism.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d1cy00550b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1971-0120</orcidid><orcidid>https://orcid.org/0000-0002-7145-5139</orcidid><orcidid>https://orcid.org/0000-0002-5797-5023</orcidid><orcidid>https://orcid.org/0000-0002-1329-0815</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2021-08, Vol.11 (15), p.5321-5334 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_webofscience_primary_000670553400001 |
source | Royal Society Of Chemistry Journals 2008-; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Alkenes Aluminum oxide Carbon dioxide Catalysts Chemistry Chemistry, Physical Confinement Dehydrogenation Lewis acid Metal oxides Nanorods Nickel oxides Niobium oxides Physical Sciences Science & Technology Selectivity Water gas |
title | Nb2O5 as a radical modulator during oxidative dehydrogenation and as a Lewis acid promoter in CO2 assisted dehydrogenation of octane over confined 2D engineered NiO-Nb2O5-Al2O3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nb2O5%20as%20a%20radical%20modulator%20during%20oxidative%20dehydrogenation%20and%20as%20a%20Lewis%20acid%20promoter%20in%20CO2%20assisted%20dehydrogenation%20of%20octane%20over%20confined%202D%20engineered%20NiO-Nb2O5-Al2O3&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Farahani,%20Majid%20D.&rft.date=2021-08-07&rft.volume=11&rft.issue=15&rft.spage=5321&rft.epage=5334&rft.pages=5321-5334&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d1cy00550b&rft_dat=%3Cproquest_webof%3E2557240421%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557240421&rft_id=info:pmid/&rfr_iscdi=true |