Prediction of unusual plasma discharge by using Support Vector Machine
•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual e...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2021-06, Vol.167, p.112360, Article 112360 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112360 |
container_title | Fusion engineering and design |
container_volume | 167 |
creator | Nakagawa, Shota Hochin, Teruhisa Nomiya, Hiroki Nakanishi, Hideya Shoji, Mamoru |
description | •It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission.
This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission. |
doi_str_mv | 10.1016/j.fusengdes.2021.112360 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2537152783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379621001368</els_id><sourcerecordid>2537152783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKe_wYDXrXmTNm0ux3AqTBT8uA0xH1vK1tSkFfbv7ah4K7xwbs45L-dB6BpIDgT4bZO7Idl2Y2zKKaGQA1DGyQmaQV2xrALBT9GMCEoyVgl-ji5SagiBarwZWr1Ea7zufWhxcHhohzSoHe52Ku0VNj7prYobiz8PeEi-3eDXoetC7PGH1X2I-EnprW_tJTpzapfs1a_O0fvq7m35kK2f7x-Xi3WmWV31GSuACSqUs6RWghS2AGe50tyIsrYlCGcIKwqgYBjXBdWEEaGJ4SUUzBnN5uhm6u1i-Bps6mUThtiOLyUtWQUlrWo2uqrJpWNIKVonu-j3Kh4kEHmEJhv5B00eockJ2phcTEk7jvj2NsqkvW31yCiOg6UJ_t-OH0LEeO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537152783</pqid></control><display><type>article</type><title>Prediction of unusual plasma discharge by using Support Vector Machine</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nakagawa, Shota ; Hochin, Teruhisa ; Nomiya, Hiroki ; Nakanishi, Hideya ; Shoji, Mamoru</creator><creatorcontrib>Nakagawa, Shota ; Hochin, Teruhisa ; Nomiya, Hiroki ; Nakanishi, Hideya ; Shoji, Mamoru</creatorcontrib><description>•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission.
This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2021.112360</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Emission analysis ; Plasma ; Plasma jets ; Plasma physics ; Prediction ; Support Vector Machine ; Support vector machines ; Unusual emission ; Vessels</subject><ispartof>Fusion engineering and design, 2021-06, Vol.167, p.112360, Article 112360</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</citedby><cites>FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</cites><orcidid>0000-0003-0655-7347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2021.112360$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nakagawa, Shota</creatorcontrib><creatorcontrib>Hochin, Teruhisa</creatorcontrib><creatorcontrib>Nomiya, Hiroki</creatorcontrib><creatorcontrib>Nakanishi, Hideya</creatorcontrib><creatorcontrib>Shoji, Mamoru</creatorcontrib><title>Prediction of unusual plasma discharge by using Support Vector Machine</title><title>Fusion engineering and design</title><description>•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission.
This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission.</description><subject>Emission analysis</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>Plasma physics</subject><subject>Prediction</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Unusual emission</subject><subject>Vessels</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAYhYMoOKe_wYDXrXmTNm0ux3AqTBT8uA0xH1vK1tSkFfbv7ah4K7xwbs45L-dB6BpIDgT4bZO7Idl2Y2zKKaGQA1DGyQmaQV2xrALBT9GMCEoyVgl-ji5SagiBarwZWr1Ea7zufWhxcHhohzSoHe52Ku0VNj7prYobiz8PeEi-3eDXoetC7PGH1X2I-EnprW_tJTpzapfs1a_O0fvq7m35kK2f7x-Xi3WmWV31GSuACSqUs6RWghS2AGe50tyIsrYlCGcIKwqgYBjXBdWEEaGJ4SUUzBnN5uhm6u1i-Bps6mUThtiOLyUtWQUlrWo2uqrJpWNIKVonu-j3Kh4kEHmEJhv5B00eockJ2phcTEk7jvj2NsqkvW31yCiOg6UJ_t-OH0LEeO4</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nakagawa, Shota</creator><creator>Hochin, Teruhisa</creator><creator>Nomiya, Hiroki</creator><creator>Nakanishi, Hideya</creator><creator>Shoji, Mamoru</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0655-7347</orcidid></search><sort><creationdate>20210601</creationdate><title>Prediction of unusual plasma discharge by using Support Vector Machine</title><author>Nakagawa, Shota ; Hochin, Teruhisa ; Nomiya, Hiroki ; Nakanishi, Hideya ; Shoji, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-3413929afe08a904e41fe6ac6d958e519fd0344121d36c42c0309c0d65143fdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Emission analysis</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>Plasma physics</topic><topic>Prediction</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Unusual emission</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakagawa, Shota</creatorcontrib><creatorcontrib>Hochin, Teruhisa</creatorcontrib><creatorcontrib>Nomiya, Hiroki</creatorcontrib><creatorcontrib>Nakanishi, Hideya</creatorcontrib><creatorcontrib>Shoji, Mamoru</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakagawa, Shota</au><au>Hochin, Teruhisa</au><au>Nomiya, Hiroki</au><au>Nakanishi, Hideya</au><au>Shoji, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of unusual plasma discharge by using Support Vector Machine</atitle><jtitle>Fusion engineering and design</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>167</volume><spage>112360</spage><pages>112360-</pages><artnum>112360</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•It is shown that unusual visible light emission inside the plasma vessel can be predicted by using Support Vector Machine (SVM), a machine learning method.•The probability of the unusual emission is obtained by taking mean values of the probability values of several frames in a video.•199 unusual emission videos and 254 videos without unusual emissions are prepared.•The prediction accuracy rate attains to 96.4%.•The unusual visible light emission may be able to be predicted around 0.3 s before the beginning of an unusual emission.
This paper proposes a method for predicting an unusual emission of visible light inside the plasma vessel by using a Support Vector Machine (SVM) because the unusual emission of visible light can be caused by unexpected heating on the vessel surface. This emission must be predicted to avoid unexpected situations in which it causes some damage to the vessel. The light reflected from the divertor tiles is used as the unusual emission light. This study aims to predict such unusual emission through pictures before the start of the unusual emission, regardless of the plasma physics. This study experimentally confirms that the unusual emission of visible light inside the plasma vessel can be predicted with an accuracy rate of 96.4%, and approximately 0.3 s before the start of an unusual emission.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2021.112360</doi><orcidid>https://orcid.org/0000-0003-0655-7347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2021-06, Vol.167, p.112360, Article 112360 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_journals_2537152783 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Emission analysis Plasma Plasma jets Plasma physics Prediction Support Vector Machine Support vector machines Unusual emission Vessels |
title | Prediction of unusual plasma discharge by using Support Vector Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20unusual%20plasma%20discharge%20by%20using%20Support%20Vector%20Machine&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Nakagawa,%20Shota&rft.date=2021-06-01&rft.volume=167&rft.spage=112360&rft.pages=112360-&rft.artnum=112360&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2021.112360&rft_dat=%3Cproquest_cross%3E2537152783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537152783&rft_id=info:pmid/&rft_els_id=S0920379621001368&rfr_iscdi=true |