Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements
There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densit...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-06, Vol.12 (1), p.3828-3828, Article 3828 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3828 |
---|---|
container_issue | 1 |
container_start_page | 3828 |
container_title | Nature communications |
container_volume | 12 |
creator | Arpaci, Sevdenur Lopez-Dominguez, Victor Shi, Jiacheng Sánchez-Tejerina, Luis Garesci, Francesca Wang, Chulin Yan, Xueting Sangwan, Vinod K. Grayson, Matthew A. Hersam, Mark C. Finocchio, Giovanni Khalili Amiri, Pedram |
description | There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn
3
/Pt devices. A six-terminal double-cross device is constructed, with an IrMn
3
pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn
3
after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn
3
pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.
Anti-ferromagnetic based memories have a wide range of advantages over their ferromagnetic counterparts, however, their electrical signatures of switching are complicated by spurious signals. Here, Arpaci et al demonstrate an experimental method to distinguish between anti-ferromagnetic switching, and such spurious signatures. |
doi_str_mv | 10.1038/s41467-021-24237-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000669043000007CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7962adb64f1b4c0aacee238c2f42e02a</doaj_id><sourcerecordid>2544460908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-af0db589d36e71bdcf1127aace7879f4e1d2d842d73cc96be6bd994a8865cea3</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEolXpH2AVwQYJBfyKY2-Q0IjHSEXddG859k3GVcYutjPV_HucSVUoC4Q3tny_c3yvdarqNUYfMKLiY2KY8a5BBDeEEdo1x2fVOUEMN7gj9Pkf57PqMqVbVBaVWDD2sjqjDLeixfi8Olz3CeJBZxd8HYbazDGCz43zdjZg63Tvstk5P9bO1z74xoRpch50rLXPboAYw16PHrIz9Tb-8LTuj7V1Q6kUH6en-hCmrEeo96DTHGFfrtOr6sWgpwSXD_tFdfP1y83me3N1_W27-XzVGI5RbvSAbN8KaSmHDvfWDBiTTmsDnejkwABbYgUjtqPGSN4D762UTAvBWwOaXlTb1dYGfavuotvreFRBO3W6CHFUOpbOJ1Cd5ETbnrMB98yg5Q0gVBgyMAKILF6fVq-7ud-DNWWMqKcnpk8r3u3UGA5KECw7LovBm9UgpOxUMi6D2ZngPZissMAFWaB3D6_E8HOGlNXeJQPTpD2EOSnSMsY4kkgU9O1f6G2Yoy_fuVBUSMZpWyiyUiaGlCIMjx1jpJYkqTVJqiRJnZKkjkUkVtE99GEorYI38CgsSeJcIkaXTKFu4_IpPpsw-1yk7_9fWmi60qkQfoT4e4Z_tPcL7efuyw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543894635</pqid></control><display><type>article</type><title>Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Arpaci, Sevdenur ; Lopez-Dominguez, Victor ; Shi, Jiacheng ; Sánchez-Tejerina, Luis ; Garesci, Francesca ; Wang, Chulin ; Yan, Xueting ; Sangwan, Vinod K. ; Grayson, Matthew A. ; Hersam, Mark C. ; Finocchio, Giovanni ; Khalili Amiri, Pedram</creator><creatorcontrib>Arpaci, Sevdenur ; Lopez-Dominguez, Victor ; Shi, Jiacheng ; Sánchez-Tejerina, Luis ; Garesci, Francesca ; Wang, Chulin ; Yan, Xueting ; Sangwan, Vinod K. ; Grayson, Matthew A. ; Hersam, Mark C. ; Finocchio, Giovanni ; Khalili Amiri, Pedram</creatorcontrib><description>There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn
3
/Pt devices. A six-terminal double-cross device is constructed, with an IrMn
3
pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn
3
after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn
3
pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.
Anti-ferromagnetic based memories have a wide range of advantages over their ferromagnetic counterparts, however, their electrical signatures of switching are complicated by spurious signals. Here, Arpaci et al demonstrate an experimental method to distinguish between anti-ferromagnetic switching, and such spurious signatures.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24237-y</identifier><identifier>PMID: 34158511</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/1130/2798 ; 639/766/119/1001 ; Antiferromagnetism ; Current density ; Electrical measurement ; Electrodes ; electronic and spintronic devices ; ENGINEERING ; Experimental methods ; Experiments ; Ferromagnetism ; Heavy metals ; Humanities and Social Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Magnetic fields ; Magnetic switching ; Magnetoresistivity ; MATERIALS SCIENCE ; MATHEMATICS AND COMPUTING ; Memory devices ; multidisciplinary ; Multidisciplinary Sciences ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Signatures ; spintronics ; Voltage</subject><ispartof>Nature communications, 2021-06, Vol.12 (1), p.3828-3828, Article 3828</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>33</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000669043000007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c610t-af0db589d36e71bdcf1127aace7879f4e1d2d842d73cc96be6bd994a8865cea3</citedby><cites>FETCH-LOGICAL-c610t-af0db589d36e71bdcf1127aace7879f4e1d2d842d73cc96be6bd994a8865cea3</cites><orcidid>0000-0002-0403-9581 ; 0000-0002-1043-3876 ; 0000-0002-1539-1521 ; 0000-0002-5623-5285 ; 0000-0002-1877-3445 ; 0000-0001-6898-7161 ; 0000-0003-4914-5043 ; 0000-0003-4120-1426 ; 0000-0001-7301-6968 ; 0000000341201426 ; 0000000204039581 ; 0000000210433876 ; 0000000349145043 ; 0000000256235285 ; 0000000168987161 ; 0000000173016968 ; 0000000215391521 ; 0000000218773445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219769/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219769/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1816939$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arpaci, Sevdenur</creatorcontrib><creatorcontrib>Lopez-Dominguez, Victor</creatorcontrib><creatorcontrib>Shi, Jiacheng</creatorcontrib><creatorcontrib>Sánchez-Tejerina, Luis</creatorcontrib><creatorcontrib>Garesci, Francesca</creatorcontrib><creatorcontrib>Wang, Chulin</creatorcontrib><creatorcontrib>Yan, Xueting</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Grayson, Matthew A.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><creatorcontrib>Finocchio, Giovanni</creatorcontrib><creatorcontrib>Khalili Amiri, Pedram</creatorcontrib><title>Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><description>There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn
3
/Pt devices. A six-terminal double-cross device is constructed, with an IrMn
3
pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn
3
after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn
3
pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.
Anti-ferromagnetic based memories have a wide range of advantages over their ferromagnetic counterparts, however, their electrical signatures of switching are complicated by spurious signals. Here, Arpaci et al demonstrate an experimental method to distinguish between anti-ferromagnetic switching, and such spurious signatures.</description><subject>142/126</subject><subject>639/766/1130/2798</subject><subject>639/766/119/1001</subject><subject>Antiferromagnetism</subject><subject>Current density</subject><subject>Electrical measurement</subject><subject>Electrodes</subject><subject>electronic and spintronic devices</subject><subject>ENGINEERING</subject><subject>Experimental methods</subject><subject>Experiments</subject><subject>Ferromagnetism</subject><subject>Heavy metals</subject><subject>Humanities and Social Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Magnetic fields</subject><subject>Magnetic switching</subject><subject>Magnetoresistivity</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Memory devices</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Signatures</subject><subject>spintronics</subject><subject>Voltage</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEolXpH2AVwQYJBfyKY2-Q0IjHSEXddG859k3GVcYutjPV_HucSVUoC4Q3tny_c3yvdarqNUYfMKLiY2KY8a5BBDeEEdo1x2fVOUEMN7gj9Pkf57PqMqVbVBaVWDD2sjqjDLeixfi8Olz3CeJBZxd8HYbazDGCz43zdjZg63Tvstk5P9bO1z74xoRpch50rLXPboAYw16PHrIz9Tb-8LTuj7V1Q6kUH6en-hCmrEeo96DTHGFfrtOr6sWgpwSXD_tFdfP1y83me3N1_W27-XzVGI5RbvSAbN8KaSmHDvfWDBiTTmsDnejkwABbYgUjtqPGSN4D762UTAvBWwOaXlTb1dYGfavuotvreFRBO3W6CHFUOpbOJ1Cd5ETbnrMB98yg5Q0gVBgyMAKILF6fVq-7ud-DNWWMqKcnpk8r3u3UGA5KECw7LovBm9UgpOxUMi6D2ZngPZissMAFWaB3D6_E8HOGlNXeJQPTpD2EOSnSMsY4kkgU9O1f6G2Yoy_fuVBUSMZpWyiyUiaGlCIMjx1jpJYkqTVJqiRJnZKkjkUkVtE99GEorYI38CgsSeJcIkaXTKFu4_IpPpsw-1yk7_9fWmi60qkQfoT4e4Z_tPcL7efuyw</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Arpaci, Sevdenur</creator><creator>Lopez-Dominguez, Victor</creator><creator>Shi, Jiacheng</creator><creator>Sánchez-Tejerina, Luis</creator><creator>Garesci, Francesca</creator><creator>Wang, Chulin</creator><creator>Yan, Xueting</creator><creator>Sangwan, Vinod K.</creator><creator>Grayson, Matthew A.</creator><creator>Hersam, Mark C.</creator><creator>Finocchio, Giovanni</creator><creator>Khalili Amiri, Pedram</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0403-9581</orcidid><orcidid>https://orcid.org/0000-0002-1043-3876</orcidid><orcidid>https://orcid.org/0000-0002-1539-1521</orcidid><orcidid>https://orcid.org/0000-0002-5623-5285</orcidid><orcidid>https://orcid.org/0000-0002-1877-3445</orcidid><orcidid>https://orcid.org/0000-0001-6898-7161</orcidid><orcidid>https://orcid.org/0000-0003-4914-5043</orcidid><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000-0001-7301-6968</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid><orcidid>https://orcid.org/0000000204039581</orcidid><orcidid>https://orcid.org/0000000210433876</orcidid><orcidid>https://orcid.org/0000000349145043</orcidid><orcidid>https://orcid.org/0000000256235285</orcidid><orcidid>https://orcid.org/0000000168987161</orcidid><orcidid>https://orcid.org/0000000173016968</orcidid><orcidid>https://orcid.org/0000000215391521</orcidid><orcidid>https://orcid.org/0000000218773445</orcidid></search><sort><creationdate>20210622</creationdate><title>Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements</title><author>Arpaci, Sevdenur ; Lopez-Dominguez, Victor ; Shi, Jiacheng ; Sánchez-Tejerina, Luis ; Garesci, Francesca ; Wang, Chulin ; Yan, Xueting ; Sangwan, Vinod K. ; Grayson, Matthew A. ; Hersam, Mark C. ; Finocchio, Giovanni ; Khalili Amiri, Pedram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-af0db589d36e71bdcf1127aace7879f4e1d2d842d73cc96be6bd994a8865cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>142/126</topic><topic>639/766/1130/2798</topic><topic>639/766/119/1001</topic><topic>Antiferromagnetism</topic><topic>Current density</topic><topic>Electrical measurement</topic><topic>Electrodes</topic><topic>electronic and spintronic devices</topic><topic>ENGINEERING</topic><topic>Experimental methods</topic><topic>Experiments</topic><topic>Ferromagnetism</topic><topic>Heavy metals</topic><topic>Humanities and Social Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Magnetic fields</topic><topic>Magnetic switching</topic><topic>Magnetoresistivity</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Memory devices</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Signatures</topic><topic>spintronics</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arpaci, Sevdenur</creatorcontrib><creatorcontrib>Lopez-Dominguez, Victor</creatorcontrib><creatorcontrib>Shi, Jiacheng</creatorcontrib><creatorcontrib>Sánchez-Tejerina, Luis</creatorcontrib><creatorcontrib>Garesci, Francesca</creatorcontrib><creatorcontrib>Wang, Chulin</creatorcontrib><creatorcontrib>Yan, Xueting</creatorcontrib><creatorcontrib>Sangwan, Vinod K.</creatorcontrib><creatorcontrib>Grayson, Matthew A.</creatorcontrib><creatorcontrib>Hersam, Mark C.</creatorcontrib><creatorcontrib>Finocchio, Giovanni</creatorcontrib><creatorcontrib>Khalili Amiri, Pedram</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arpaci, Sevdenur</au><au>Lopez-Dominguez, Victor</au><au>Shi, Jiacheng</au><au>Sánchez-Tejerina, Luis</au><au>Garesci, Francesca</au><au>Wang, Chulin</au><au>Yan, Xueting</au><au>Sangwan, Vinod K.</au><au>Grayson, Matthew A.</au><au>Hersam, Mark C.</au><au>Finocchio, Giovanni</au><au>Khalili Amiri, Pedram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><date>2021-06-22</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>3828</spage><epage>3828</epage><pages>3828-3828</pages><artnum>3828</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn
3
/Pt devices. A six-terminal double-cross device is constructed, with an IrMn
3
pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn
3
after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn
3
pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.
Anti-ferromagnetic based memories have a wide range of advantages over their ferromagnetic counterparts, however, their electrical signatures of switching are complicated by spurious signals. Here, Arpaci et al demonstrate an experimental method to distinguish between anti-ferromagnetic switching, and such spurious signatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34158511</pmid><doi>10.1038/s41467-021-24237-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0403-9581</orcidid><orcidid>https://orcid.org/0000-0002-1043-3876</orcidid><orcidid>https://orcid.org/0000-0002-1539-1521</orcidid><orcidid>https://orcid.org/0000-0002-5623-5285</orcidid><orcidid>https://orcid.org/0000-0002-1877-3445</orcidid><orcidid>https://orcid.org/0000-0001-6898-7161</orcidid><orcidid>https://orcid.org/0000-0003-4914-5043</orcidid><orcidid>https://orcid.org/0000-0003-4120-1426</orcidid><orcidid>https://orcid.org/0000-0001-7301-6968</orcidid><orcidid>https://orcid.org/0000000341201426</orcidid><orcidid>https://orcid.org/0000000204039581</orcidid><orcidid>https://orcid.org/0000000210433876</orcidid><orcidid>https://orcid.org/0000000349145043</orcidid><orcidid>https://orcid.org/0000000256235285</orcidid><orcidid>https://orcid.org/0000000168987161</orcidid><orcidid>https://orcid.org/0000000173016968</orcidid><orcidid>https://orcid.org/0000000215391521</orcidid><orcidid>https://orcid.org/0000000218773445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-06, Vol.12 (1), p.3828-3828, Article 3828 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_webofscience_primary_000669043000007CitationCount |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 142/126 639/766/1130/2798 639/766/119/1001 Antiferromagnetism Current density Electrical measurement Electrodes electronic and spintronic devices ENGINEERING Experimental methods Experiments Ferromagnetism Heavy metals Humanities and Social Sciences INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Magnetic fields Magnetic switching Magnetoresistivity MATERIALS SCIENCE MATHEMATICS AND COMPUTING Memory devices multidisciplinary Multidisciplinary Sciences Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Signatures spintronics Voltage |
title | Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20current-induced%20switching%20in%20non-collinear%20antiferromagnetic%20IrMn3%20by%20differential%20voltage%20measurements&rft.jtitle=Nature%20communications&rft.au=Arpaci,%20Sevdenur&rft.date=2021-06-22&rft.volume=12&rft.issue=1&rft.spage=3828&rft.epage=3828&rft.pages=3828-3828&rft.artnum=3828&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24237-y&rft_dat=%3Cproquest_webof%3E2544460908%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543894635&rft_id=info:pmid/34158511&rft_doaj_id=oai_doaj_org_article_7962adb64f1b4c0aacee238c2f42e02a&rfr_iscdi=true |