The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation

We present the inverse scattering transform method to the six-order nonlinear Schrödinger equation on the line with zero boundary condition in the form of an appropriate Riemann–Hilbert problem. We solve the associated Riemann–Hilbert problem involving two cases of N simple poles and N multiple high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-07, Vol.105 (2), p.1741-1751
Hauptverfasser: Xu, Mengtao, Liu, Nan, Guo, Chunxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1751
container_issue 2
container_start_page 1741
container_title Nonlinear dynamics
container_volume 105
creator Xu, Mengtao
Liu, Nan
Guo, Chunxiao
description We present the inverse scattering transform method to the six-order nonlinear Schrödinger equation on the line with zero boundary condition in the form of an appropriate Riemann–Hilbert problem. We solve the associated Riemann–Hilbert problem involving two cases of N simple poles and N multiple higher-order poles, which enables us to obtain the exact formulae of N -soliton and multiple-poles soliton solutions. Furthermore, the dynamic behaviors of various solitons are displayed.
doi_str_mv 10.1007/s11071-021-06632-8
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000668418200001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557912873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2a82eda09e1de20d4bebdd50131dc6d02409eb62415ec12f8387e76426f7c7f3</originalsourceid><addsrcrecordid>eNqNkM9uGyEQh1GUSnHcvkBOK-UY0QywC-wxspq0kqUc4oNvaL3M1lhrcGBXbV4sL5AXK_b2zy3qAYFmfh8MHyFXDD4zAHWbGAPFKPC8pBSc6jMyY5USlMt6fU5mUPOSQg3rC3KZ0g4ABAc9I9vVFov92A-OptC7Ifii8XaqHHqkh9BjKv608j4OLvhUdCEWQ0aT-0lDtBgLH3zvPDaxeGq38e3VOv89l_F5bI7IR_Kha_qEn37vc7K6_7JafKXLx4dvi7slbQWrB8obzdE2UCOzyMGWG9xYWwETzLbSAi9zayN5ySpsGe-00AqVLLnsVKs6MSfX07WHGJ5HTIPZhTH6_KLhVaVqxrUSOcWnVBtDShE7c4hu38QXw8AchZpJqMlCzUmo0Rm6maAfuAldah36Fv-C2aiUumSa51Med070_6cXbjhJWoTRDxkVE5py_Cjx3x_eGe8X9DScXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557912873</pqid></control><display><type>article</type><title>The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Xu, Mengtao ; Liu, Nan ; Guo, Chunxiao</creator><creatorcontrib>Xu, Mengtao ; Liu, Nan ; Guo, Chunxiao</creatorcontrib><description>We present the inverse scattering transform method to the six-order nonlinear Schrödinger equation on the line with zero boundary condition in the form of an appropriate Riemann–Hilbert problem. We solve the associated Riemann–Hilbert problem involving two cases of N simple poles and N multiple higher-order poles, which enables us to obtain the exact formulae of N -soliton and multiple-poles soliton solutions. Furthermore, the dynamic behaviors of various solitons are displayed.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06632-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Boundary conditions ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Engineering, Mechanical ; Inverse scattering ; Mathematics ; Mechanical Engineering ; Mechanics ; Original Paper ; Physics ; Poles ; Schrodinger equation ; Science &amp; Technology ; Solitary waves ; Technology ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-07, Vol.105 (2), p.1741-1751</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000668418200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-2a82eda09e1de20d4bebdd50131dc6d02409eb62415ec12f8387e76426f7c7f3</citedby><cites>FETCH-LOGICAL-c319t-2a82eda09e1de20d4bebdd50131dc6d02409eb62415ec12f8387e76426f7c7f3</cites><orcidid>0000-0003-2042-9923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06632-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06632-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39263,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Xu, Mengtao</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Guo, Chunxiao</creatorcontrib><title>The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><addtitle>NONLINEAR DYNAM</addtitle><description>We present the inverse scattering transform method to the six-order nonlinear Schrödinger equation on the line with zero boundary condition in the form of an appropriate Riemann–Hilbert problem. We solve the associated Riemann–Hilbert problem involving two cases of N simple poles and N multiple higher-order poles, which enables us to obtain the exact formulae of N -soliton and multiple-poles soliton solutions. Furthermore, the dynamic behaviors of various solitons are displayed.</description><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Inverse scattering</subject><subject>Mathematics</subject><subject>Mechanical Engineering</subject><subject>Mechanics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Poles</subject><subject>Schrodinger equation</subject><subject>Science &amp; Technology</subject><subject>Solitary waves</subject><subject>Technology</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkM9uGyEQh1GUSnHcvkBOK-UY0QywC-wxspq0kqUc4oNvaL3M1lhrcGBXbV4sL5AXK_b2zy3qAYFmfh8MHyFXDD4zAHWbGAPFKPC8pBSc6jMyY5USlMt6fU5mUPOSQg3rC3KZ0g4ABAc9I9vVFov92A-OptC7Ifii8XaqHHqkh9BjKv608j4OLvhUdCEWQ0aT-0lDtBgLH3zvPDaxeGq38e3VOv89l_F5bI7IR_Kha_qEn37vc7K6_7JafKXLx4dvi7slbQWrB8obzdE2UCOzyMGWG9xYWwETzLbSAi9zayN5ySpsGe-00AqVLLnsVKs6MSfX07WHGJ5HTIPZhTH6_KLhVaVqxrUSOcWnVBtDShE7c4hu38QXw8AchZpJqMlCzUmo0Rm6maAfuAldah36Fv-C2aiUumSa51Med070_6cXbjhJWoTRDxkVE5py_Cjx3x_eGe8X9DScXA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xu, Mengtao</creator><creator>Liu, Nan</creator><creator>Guo, Chunxiao</creator><general>Springer Netherlands</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2042-9923</orcidid></search><sort><creationdate>20210701</creationdate><title>The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation</title><author>Xu, Mengtao ; Liu, Nan ; Guo, Chunxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2a82eda09e1de20d4bebdd50131dc6d02409eb62415ec12f8387e76426f7c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Inverse scattering</topic><topic>Mathematics</topic><topic>Mechanical Engineering</topic><topic>Mechanics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Poles</topic><topic>Schrodinger equation</topic><topic>Science &amp; Technology</topic><topic>Solitary waves</topic><topic>Technology</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mengtao</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Guo, Chunxiao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mengtao</au><au>Liu, Nan</au><au>Guo, Chunxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><stitle>NONLINEAR DYNAM</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>105</volume><issue>2</issue><spage>1741</spage><epage>1751</epage><pages>1741-1751</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We present the inverse scattering transform method to the six-order nonlinear Schrödinger equation on the line with zero boundary condition in the form of an appropriate Riemann–Hilbert problem. We solve the associated Riemann–Hilbert problem involving two cases of N simple poles and N multiple higher-order poles, which enables us to obtain the exact formulae of N -soliton and multiple-poles soliton solutions. Furthermore, the dynamic behaviors of various solitons are displayed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06632-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2042-9923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-07, Vol.105 (2), p.1741-1751
issn 0924-090X
1573-269X
language eng
recordid cdi_webofscience_primary_000668418200001
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Automotive Engineering
Boundary conditions
Classical Mechanics
Control
Dynamical Systems
Engineering
Engineering, Mechanical
Inverse scattering
Mathematics
Mechanical Engineering
Mechanics
Original Paper
Physics
Poles
Schrodinger equation
Science & Technology
Solitary waves
Technology
Vibration
title The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multi-soliton%20and%20multiple-poles%20soliton%20solutions%20for%20the%20six-order%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Xu,%20Mengtao&rft.date=2021-07-01&rft.volume=105&rft.issue=2&rft.spage=1741&rft.epage=1751&rft.pages=1741-1751&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06632-8&rft_dat=%3Cproquest_webof%3E2557912873%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557912873&rft_id=info:pmid/&rfr_iscdi=true