Thermal Evaporation Synthesis of Vertically Aligned Zn2SnO4/ZnO Radial Heterostructured Nanowires Array

The construction of a heterostructured nanowires array allows the simultaneous manipulation of the interfacial, surface, charge transport, and transfer properties, offering new opportunities to achieve multi-functionality for various applications. Herein, we developed facile thermal evaporation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-06, Vol.11 (6), p.1500, Article 1500
Hauptverfasser: Han, Gillsang, Kang, Minje, Jeong, Yoojae, Lee, Sangwook, Cho, Insun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The construction of a heterostructured nanowires array allows the simultaneous manipulation of the interfacial, surface, charge transport, and transfer properties, offering new opportunities to achieve multi-functionality for various applications. Herein, we developed facile thermal evaporation and post-annealing method to synthesize ternary-Zn2SnO4/binary-ZnO radially heterostructured nanowires array (HNA). Vertically aligned ZnO nanowires array (3.5 mu m in length) were grown on a ZnO-nanoparticle-seeded, fluorine-doped tin oxide substrate by a hydrothermal method. Subsequently, the amorphous layer consisting of Zn-Sn-O complex was uniformly deposited on the surface of the ZnO nanowires via the thermal evaporation of the Zn and Sn powder mixture in vacuum, followed by post-annealing at 550 degrees C in air to oxidize and crystallize the Zn2SnO4 shell layer. The use of a powder mixture composed of elemental Zn and Sn (rather than oxides and carbon mixture) as an evaporation source ensures high vapor pressure at a low temperature (e.g., 700 degrees C) during thermal evaporation. The morphology, microstructure, and charge-transport properties of the Zn2SnO4/ZnO HNA were investigated by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and electrochemical impedance spectroscopy. Notably, the optimally synthesized Zn2SnO4/ZnO HNA shows an intimate interface, high surface roughness, and superior charge-separation and -transport properties compared with the pristine ZnO nanowires array.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11061500