Bounds for expected supremum of fractional Brownian motion with drift

We provide upper and lower bounds for the mean $\mathscr{M}(H)$ of $\sup_{t\geq 0} \{B_H(t) - t\}$ , with $B_H(\!\cdot\!)$ a zero-mean, variance-normalized version of fractional Brownian motion with Hurst parameter $H\in(0,1)$ . We find bounds in (semi-) closed form, distinguishing between $H\in(0,\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2021-06, Vol.58 (2), p.411-427, Article 0021900220000984
Hauptverfasser: Bisewski, Krzysztof, Dębicki, Krzysztof, Mandjes, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide upper and lower bounds for the mean $\mathscr{M}(H)$ of $\sup_{t\geq 0} \{B_H(t) - t\}$ , with $B_H(\!\cdot\!)$ a zero-mean, variance-normalized version of fractional Brownian motion with Hurst parameter $H\in(0,1)$ . We find bounds in (semi-) closed form, distinguishing between $H\in(0,\frac{1}{2}]$ and $H\in[\frac{1}{2},1)$ , where in the former regime a numerical procedure is presented that drastically reduces the upper bound. For $H\in(0,\frac{1}{2}]$ , the ratio between the upper and lower bound is bounded, whereas for $H\in[\frac{1}{2},1)$ the derived upper and lower bound have a strongly similar shape. We also derive a new upper bound for the mean of $\sup_{t\in[0,1]} B_H(t)$ , $H\in(0,\frac{1}{2}]$ , which is tight around $H=\frac{1}{2}$ .
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2020.98