Nanotesla Magnetometry with the Silicon Vacancy in Silicon Carbide

Silicon carbide is a promising host material for spin-defect-based quantum sensors owing to its commercial availability and established techniques for electrical and optical microfabricated device integration. The negatively charged silicon vacancy is one of the leading spin defects studied in silic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2021-06, Vol.15 (6), Article 064022
Hauptverfasser: Abraham, John B. S., Gutgsell, Cameron, Todorovski, Dalibor, Sperling, Scott, Epstein, Jacob E., Tien-Street, Brian S., Sweeney, Timothy M., Wathen, Jeremiah J., Pogue, Elizabeth A., Brereton, Peter G., McQueen, Tyrel M., Frey, Wesley, Clader, B. D., Osiander, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon carbide is a promising host material for spin-defect-based quantum sensors owing to its commercial availability and established techniques for electrical and optical microfabricated device integration. The negatively charged silicon vacancy is one of the leading spin defects studied in silicon carbide owing to its near-telecom photoemission, high spin number, and nearly temperature-independent ground-state zero-field splitting. We report the realization of nanotesla shot-noise-limited ensemble magnetometry based on optically detected magnetic resonance with the silicon vacancy in 4H silicon carbide. By coarsely optimizing the anneal parameters and minimizing power broadening, we achieve a sensitivity of 50 nT/√Hz and a theoretical shot-noise-limited sensitivity of 3.5 nT/√Hz. This is accomplished without utilizing complex photonic engineering, control protocols, or applying excitation powers greater than a watt. This work demonstrates that the silicon vacancy in silicon carbide provides a low-cost and simple approach to quantum sensing of magnetic fields.
ISSN:2331-7019
2331-7019
DOI:10.1103/PhysRevApplied.15.064022