Insights into the genomic evolution of insects from cricket genomes

Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-06, Vol.4 (1), p.733-733, Article 733
Hauptverfasser: Ylla, Guillem, Nakamura, Taro, Itoh, Takehiko, Kajitani, Rei, Toyoda, Atsushi, Tomonari, Sayuri, Bando, Tetsuya, Ishimaru, Yoshiyasu, Watanabe, Takahito, Fuketa, Masao, Matsuoka, Yuji, Barnett, Austen A., Noji, Sumihare, Mito, Taro, Extavour, Cassandra G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue 1
container_start_page 733
container_title Communications biology
container_volume 4
creator Ylla, Guillem
Nakamura, Taro
Itoh, Takehiko
Kajitani, Rei
Toyoda, Atsushi
Tomonari, Sayuri
Bando, Tetsuya
Ishimaru, Yoshiyasu
Watanabe, Takahito
Fuketa, Masao
Matsuoka, Yuji
Barnett, Austen A.
Noji, Sumihare
Mito, Taro
Extavour, Cassandra G.
description Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus , and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis . We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.
doi_str_mv 10.1038/s42003-021-02197-9
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000663716200004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0568cec9b7a546a2b49bef827aec2aed</doaj_id><sourcerecordid>2540467521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-47f6f3f1d23d581bd2153660d4aff08170b27f31c681019aa3abb7dc4760992c3</originalsourceid><addsrcrecordid>eNqNkU2L1TAYhYsozjDOH3BVcCNINV9Nmo0gxY8LA250HdL0TW-ubTIm6Yj_3nQ6jI4LcRES8j7ncJJTVc8xeo0R7d4kRhCiDSJ4W1I08lF1TqiUDeWMPP7jfFZdpnRCCGEpJafsaXVGGSZCdOS86g8-uemYU-18DnU-Qj2BD4szNdyEec0u-DrYMk1gCmVjWGoTnfkGeSchPaueWD0nuLzbL6qvH95_6T81V58_Hvp3V43hROSGCcsttXgkdGw7PIwEt5RzNDJtLeqwQAMRlmLDO1yyak31MIjRMMGRlMTQi-qw-45Bn9R1dIuOP1XQTt1ehDgpHbMzMyjU8s6AkYPQLeOaDEwOYDsiNBiiYSxeb3ev63VYYDTgc9TzA9OHE--Oago3qiOIik4Wg5d3BjF8XyFltbhkYJ61h7AmRVqGaWFpW9AXf6GnsEZfvmqjEOOiJbhQZKdMDClFsPdhMFJb5WqvXJW61W3lakvR7aIfMASbjANv4F5YOuecCsyLDiHWu6y3Pvuw-lykr_5fWmi606kQfoL4-w3_iPcLyD7NbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540467521</pqid></control><display><type>article</type><title>Insights into the genomic evolution of insects from cricket genomes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Ylla, Guillem ; Nakamura, Taro ; Itoh, Takehiko ; Kajitani, Rei ; Toyoda, Atsushi ; Tomonari, Sayuri ; Bando, Tetsuya ; Ishimaru, Yoshiyasu ; Watanabe, Takahito ; Fuketa, Masao ; Matsuoka, Yuji ; Barnett, Austen A. ; Noji, Sumihare ; Mito, Taro ; Extavour, Cassandra G.</creator><creatorcontrib>Ylla, Guillem ; Nakamura, Taro ; Itoh, Takehiko ; Kajitani, Rei ; Toyoda, Atsushi ; Tomonari, Sayuri ; Bando, Tetsuya ; Ishimaru, Yoshiyasu ; Watanabe, Takahito ; Fuketa, Masao ; Matsuoka, Yuji ; Barnett, Austen A. ; Noji, Sumihare ; Mito, Taro ; Extavour, Cassandra G.</creatorcontrib><description>Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus , and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis . We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-021-02197-9</identifier><identifier>PMID: 34127782</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 631/208/726/2001/1428 ; 631/601/1466 ; Biology ; Biomedical and Life Sciences ; Courtship ; CpG islands ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Evolution ; Genomes ; Genomics ; Insects ; Life Sciences ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; Metamorphosis ; Multidisciplinary Sciences ; Orthoptera ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Transposons</subject><ispartof>Communications biology, 2021-06, Vol.4 (1), p.733-733, Article 733</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>40</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663716200004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c627t-47f6f3f1d23d581bd2153660d4aff08170b27f31c681019aa3abb7dc4760992c3</citedby><cites>FETCH-LOGICAL-c627t-47f6f3f1d23d581bd2153660d4aff08170b27f31c681019aa3abb7dc4760992c3</cites><orcidid>0000-0003-4540-0131 ; 0000-0003-4441-1672 ; 0000-0003-2922-5855 ; 0000-0002-3574-972X ; 0000-0001-8341-3115 ; 0000-0002-7017-7499 ; 0000-0002-6113-557X ; 0000-0003-4290-7594 ; 0000-0002-5013-0052 ; 0000-0002-0728-7548 ; 0000-0001-5668-9685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203789/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203789/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,41127,42196,51583,53798,53800</link.rule.ids></links><search><creatorcontrib>Ylla, Guillem</creatorcontrib><creatorcontrib>Nakamura, Taro</creatorcontrib><creatorcontrib>Itoh, Takehiko</creatorcontrib><creatorcontrib>Kajitani, Rei</creatorcontrib><creatorcontrib>Toyoda, Atsushi</creatorcontrib><creatorcontrib>Tomonari, Sayuri</creatorcontrib><creatorcontrib>Bando, Tetsuya</creatorcontrib><creatorcontrib>Ishimaru, Yoshiyasu</creatorcontrib><creatorcontrib>Watanabe, Takahito</creatorcontrib><creatorcontrib>Fuketa, Masao</creatorcontrib><creatorcontrib>Matsuoka, Yuji</creatorcontrib><creatorcontrib>Barnett, Austen A.</creatorcontrib><creatorcontrib>Noji, Sumihare</creatorcontrib><creatorcontrib>Mito, Taro</creatorcontrib><creatorcontrib>Extavour, Cassandra G.</creatorcontrib><title>Insights into the genomic evolution of insects from cricket genomes</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>COMMUN BIOL</addtitle><description>Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus , and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis . We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.</description><subject>45/23</subject><subject>631/208/726/2001/1428</subject><subject>631/601/1466</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Courtship</subject><subject>CpG islands</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Evolution</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>Metamorphosis</subject><subject>Multidisciplinary Sciences</subject><subject>Orthoptera</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Transposons</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU2L1TAYhYsozjDOH3BVcCNINV9Nmo0gxY8LA250HdL0TW-ubTIm6Yj_3nQ6jI4LcRES8j7ncJJTVc8xeo0R7d4kRhCiDSJ4W1I08lF1TqiUDeWMPP7jfFZdpnRCCGEpJafsaXVGGSZCdOS86g8-uemYU-18DnU-Qj2BD4szNdyEec0u-DrYMk1gCmVjWGoTnfkGeSchPaueWD0nuLzbL6qvH95_6T81V58_Hvp3V43hROSGCcsttXgkdGw7PIwEt5RzNDJtLeqwQAMRlmLDO1yyak31MIjRMMGRlMTQi-qw-45Bn9R1dIuOP1XQTt1ehDgpHbMzMyjU8s6AkYPQLeOaDEwOYDsiNBiiYSxeb3ev63VYYDTgc9TzA9OHE--Oago3qiOIik4Wg5d3BjF8XyFltbhkYJ61h7AmRVqGaWFpW9AXf6GnsEZfvmqjEOOiJbhQZKdMDClFsPdhMFJb5WqvXJW61W3lakvR7aIfMASbjANv4F5YOuecCsyLDiHWu6y3Pvuw-lykr_5fWmi606kQfoL4-w3_iPcLyD7NbQ</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Ylla, Guillem</creator><creator>Nakamura, Taro</creator><creator>Itoh, Takehiko</creator><creator>Kajitani, Rei</creator><creator>Toyoda, Atsushi</creator><creator>Tomonari, Sayuri</creator><creator>Bando, Tetsuya</creator><creator>Ishimaru, Yoshiyasu</creator><creator>Watanabe, Takahito</creator><creator>Fuketa, Masao</creator><creator>Matsuoka, Yuji</creator><creator>Barnett, Austen A.</creator><creator>Noji, Sumihare</creator><creator>Mito, Taro</creator><creator>Extavour, Cassandra G.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4540-0131</orcidid><orcidid>https://orcid.org/0000-0003-4441-1672</orcidid><orcidid>https://orcid.org/0000-0003-2922-5855</orcidid><orcidid>https://orcid.org/0000-0002-3574-972X</orcidid><orcidid>https://orcid.org/0000-0001-8341-3115</orcidid><orcidid>https://orcid.org/0000-0002-7017-7499</orcidid><orcidid>https://orcid.org/0000-0002-6113-557X</orcidid><orcidid>https://orcid.org/0000-0003-4290-7594</orcidid><orcidid>https://orcid.org/0000-0002-5013-0052</orcidid><orcidid>https://orcid.org/0000-0002-0728-7548</orcidid><orcidid>https://orcid.org/0000-0001-5668-9685</orcidid></search><sort><creationdate>20210614</creationdate><title>Insights into the genomic evolution of insects from cricket genomes</title><author>Ylla, Guillem ; Nakamura, Taro ; Itoh, Takehiko ; Kajitani, Rei ; Toyoda, Atsushi ; Tomonari, Sayuri ; Bando, Tetsuya ; Ishimaru, Yoshiyasu ; Watanabe, Takahito ; Fuketa, Masao ; Matsuoka, Yuji ; Barnett, Austen A. ; Noji, Sumihare ; Mito, Taro ; Extavour, Cassandra G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-47f6f3f1d23d581bd2153660d4aff08170b27f31c681019aa3abb7dc4760992c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/23</topic><topic>631/208/726/2001/1428</topic><topic>631/601/1466</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Courtship</topic><topic>CpG islands</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Evolution</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>Metamorphosis</topic><topic>Multidisciplinary Sciences</topic><topic>Orthoptera</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ylla, Guillem</creatorcontrib><creatorcontrib>Nakamura, Taro</creatorcontrib><creatorcontrib>Itoh, Takehiko</creatorcontrib><creatorcontrib>Kajitani, Rei</creatorcontrib><creatorcontrib>Toyoda, Atsushi</creatorcontrib><creatorcontrib>Tomonari, Sayuri</creatorcontrib><creatorcontrib>Bando, Tetsuya</creatorcontrib><creatorcontrib>Ishimaru, Yoshiyasu</creatorcontrib><creatorcontrib>Watanabe, Takahito</creatorcontrib><creatorcontrib>Fuketa, Masao</creatorcontrib><creatorcontrib>Matsuoka, Yuji</creatorcontrib><creatorcontrib>Barnett, Austen A.</creatorcontrib><creatorcontrib>Noji, Sumihare</creatorcontrib><creatorcontrib>Mito, Taro</creatorcontrib><creatorcontrib>Extavour, Cassandra G.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ylla, Guillem</au><au>Nakamura, Taro</au><au>Itoh, Takehiko</au><au>Kajitani, Rei</au><au>Toyoda, Atsushi</au><au>Tomonari, Sayuri</au><au>Bando, Tetsuya</au><au>Ishimaru, Yoshiyasu</au><au>Watanabe, Takahito</au><au>Fuketa, Masao</au><au>Matsuoka, Yuji</au><au>Barnett, Austen A.</au><au>Noji, Sumihare</au><au>Mito, Taro</au><au>Extavour, Cassandra G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the genomic evolution of insects from cricket genomes</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><stitle>COMMUN BIOL</stitle><date>2021-06-14</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>733</spage><epage>733</epage><pages>733-733</pages><artnum>733</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus , and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis . We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34127782</pmid><doi>10.1038/s42003-021-02197-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4540-0131</orcidid><orcidid>https://orcid.org/0000-0003-4441-1672</orcidid><orcidid>https://orcid.org/0000-0003-2922-5855</orcidid><orcidid>https://orcid.org/0000-0002-3574-972X</orcidid><orcidid>https://orcid.org/0000-0001-8341-3115</orcidid><orcidid>https://orcid.org/0000-0002-7017-7499</orcidid><orcidid>https://orcid.org/0000-0002-6113-557X</orcidid><orcidid>https://orcid.org/0000-0003-4290-7594</orcidid><orcidid>https://orcid.org/0000-0002-5013-0052</orcidid><orcidid>https://orcid.org/0000-0002-0728-7548</orcidid><orcidid>https://orcid.org/0000-0001-5668-9685</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2021-06, Vol.4 (1), p.733-733, Article 733
issn 2399-3642
2399-3642
language eng
recordid cdi_webofscience_primary_000663716200004CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals
subjects 45/23
631/208/726/2001/1428
631/601/1466
Biology
Biomedical and Life Sciences
Courtship
CpG islands
Deoxyribonucleic acid
DNA
DNA methylation
Evolution
Genomes
Genomics
Insects
Life Sciences
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
Metamorphosis
Multidisciplinary Sciences
Orthoptera
Science & Technology
Science & Technology - Other Topics
Transposons
title Insights into the genomic evolution of insects from cricket genomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20genomic%20evolution%20of%20insects%20from%20cricket%20genomes&rft.jtitle=Communications%20biology&rft.au=Ylla,%20Guillem&rft.date=2021-06-14&rft.volume=4&rft.issue=1&rft.spage=733&rft.epage=733&rft.pages=733-733&rft.artnum=733&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-021-02197-9&rft_dat=%3Cproquest_webof%3E2540467521%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2540467521&rft_id=info:pmid/34127782&rft_doaj_id=oai_doaj_org_article_0568cec9b7a546a2b49bef827aec2aed&rfr_iscdi=true