Ant Colony Optimization Inversion Using the L1 Norm in Advanced Tunnel Detection

During the construction of the tunnel, there may be water-bearing anomalous structures such as fault fracture zone. In order to ensure the safety of the tunnel, it is necessary to carry out advanced tunnel detection. The traditional linear inversion method is highly dependent on the initial model in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-7
Hauptverfasser: Ma, Zhao, Nie, Lichao, Zhou, Pengfei, Deng, Zhaoyang, Guo, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Ma, Zhao
Nie, Lichao
Zhou, Pengfei
Deng, Zhaoyang
Guo, Lei
description During the construction of the tunnel, there may be water-bearing anomalous structures such as fault fracture zone. In order to ensure the safety of the tunnel, it is necessary to carry out advanced tunnel detection. The traditional linear inversion method is highly dependent on the initial model in the tunnel resistivity inversion, which makes the inversion results falling into the local optimal optimum rather than the global one. Therefore, an inversion method for tunnel resistivity advanced detection based on ant colony algorithm is proposed in this paper. In order to improve the accuracy of tunnel advanced detection of deep anomalous bodies, an ant colony optimization (ACO) inversion is used by integrating depth weighting into the inversion function. At the same time, in view of the high efficiency and low cost of one-dimension inversion and the advantages of L1 norm in boundary characterization, a one-dimensional ant colony algorithm is adopted in this paper. In order to evaluate the performance of the algorithm, two sets of numerical simulations were carried out. Finally, the application of the actual tunnel water-bearing anomalous structure was carried out in a real example to evaluate the application effect, and it was verified by excavation exposure.
doi_str_mv 10.1155/2021/6649454
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000663675200012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518011962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ae572e03e83be0cd858d1c1e6f22e9c7187a49db81e8ca2add6ddbe1f56904b3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhCMEEuVx4wdY4ggBrxM7ybEKT6kCDkXiFjn2Boxau8QuFfx6HFrBDXHaOXyzuzNJcgT0DIDzc0YZnAuRVznPt5IRcJGlHPJiO2rK8hRY9rSb7Hn_SiPJoRwlD2MbSO1mzn6Q-0Uwc_Mpg3GW3Np37P2gHr2xzyS8IJkAuXP9nBhLxvpdWoWaTJfW4oxcYEA1GA-SnU7OPB5u5n4yvbqc1jfp5P76th5PUpUVIqQSecGQZlhmLVKlS15qUICiYwwrVUBZyLzSbQlYKsmk1kLrFqHjoqJ5m-0nx-u1i969LdGH5tUtexsvNiwGowCVYJE6XVOqd9732DWL3sxl_9EAbYbKmqGyZlNZxMs1vsLWdV4ZjBF_LJRSITJRcBYVsNqE76Zqt7QhWk_-b_2lX4zVcmX-fusLg12Lmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518011962</pqid></control><display><type>article</type><title>Ant Colony Optimization Inversion Using the L1 Norm in Advanced Tunnel Detection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Ma, Zhao ; Nie, Lichao ; Zhou, Pengfei ; Deng, Zhaoyang ; Guo, Lei</creator><contributor>Hanne, Thomas ; Thomas Hanne</contributor><creatorcontrib>Ma, Zhao ; Nie, Lichao ; Zhou, Pengfei ; Deng, Zhaoyang ; Guo, Lei ; Hanne, Thomas ; Thomas Hanne</creatorcontrib><description>During the construction of the tunnel, there may be water-bearing anomalous structures such as fault fracture zone. In order to ensure the safety of the tunnel, it is necessary to carry out advanced tunnel detection. The traditional linear inversion method is highly dependent on the initial model in the tunnel resistivity inversion, which makes the inversion results falling into the local optimal optimum rather than the global one. Therefore, an inversion method for tunnel resistivity advanced detection based on ant colony algorithm is proposed in this paper. In order to improve the accuracy of tunnel advanced detection of deep anomalous bodies, an ant colony optimization (ACO) inversion is used by integrating depth weighting into the inversion function. At the same time, in view of the high efficiency and low cost of one-dimension inversion and the advantages of L1 norm in boundary characterization, a one-dimensional ant colony algorithm is adopted in this paper. In order to evaluate the performance of the algorithm, two sets of numerical simulations were carried out. Finally, the application of the actual tunnel water-bearing anomalous structure was carried out in a real example to evaluate the application effect, and it was verified by excavation exposure.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6649454</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Accuracy ; Algorithms ; Ant colony optimization ; Electrical resistivity ; Electrodes ; Engineering ; Engineering, Multidisciplinary ; Food ; Foraging behavior ; Mathematical models ; Mathematics ; Mathematics, Interdisciplinary Applications ; Optimization ; Performance evaluation ; Pheromones ; Physical Sciences ; Science &amp; Technology ; Technology ; Trails ; Tunnel construction</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-7</ispartof><rights>Copyright © 2021 Zhao Ma et al.</rights><rights>Copyright © 2021 Zhao Ma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663675200012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c376t-ae572e03e83be0cd858d1c1e6f22e9c7187a49db81e8ca2add6ddbe1f56904b3</citedby><cites>FETCH-LOGICAL-c376t-ae572e03e83be0cd858d1c1e6f22e9c7187a49db81e8ca2add6ddbe1f56904b3</cites><orcidid>0000-0003-3177-4052 ; 0000-0001-9468-2329 ; 0000-0003-0609-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930,39263</link.rule.ids></links><search><contributor>Hanne, Thomas</contributor><contributor>Thomas Hanne</contributor><creatorcontrib>Ma, Zhao</creatorcontrib><creatorcontrib>Nie, Lichao</creatorcontrib><creatorcontrib>Zhou, Pengfei</creatorcontrib><creatorcontrib>Deng, Zhaoyang</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><title>Ant Colony Optimization Inversion Using the L1 Norm in Advanced Tunnel Detection</title><title>Mathematical problems in engineering</title><addtitle>MATH PROBL ENG</addtitle><description>During the construction of the tunnel, there may be water-bearing anomalous structures such as fault fracture zone. In order to ensure the safety of the tunnel, it is necessary to carry out advanced tunnel detection. The traditional linear inversion method is highly dependent on the initial model in the tunnel resistivity inversion, which makes the inversion results falling into the local optimal optimum rather than the global one. Therefore, an inversion method for tunnel resistivity advanced detection based on ant colony algorithm is proposed in this paper. In order to improve the accuracy of tunnel advanced detection of deep anomalous bodies, an ant colony optimization (ACO) inversion is used by integrating depth weighting into the inversion function. At the same time, in view of the high efficiency and low cost of one-dimension inversion and the advantages of L1 norm in boundary characterization, a one-dimensional ant colony algorithm is adopted in this paper. In order to evaluate the performance of the algorithm, two sets of numerical simulations were carried out. Finally, the application of the actual tunnel water-bearing anomalous structure was carried out in a real example to evaluate the application effect, and it was verified by excavation exposure.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Food</subject><subject>Foraging behavior</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Pheromones</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Trails</subject><subject>Tunnel construction</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkEtPwzAQhCMEEuVx4wdY4ggBrxM7ybEKT6kCDkXiFjn2Boxau8QuFfx6HFrBDXHaOXyzuzNJcgT0DIDzc0YZnAuRVznPt5IRcJGlHPJiO2rK8hRY9rSb7Hn_SiPJoRwlD2MbSO1mzn6Q-0Uwc_Mpg3GW3Np37P2gHr2xzyS8IJkAuXP9nBhLxvpdWoWaTJfW4oxcYEA1GA-SnU7OPB5u5n4yvbqc1jfp5P76th5PUpUVIqQSecGQZlhmLVKlS15qUICiYwwrVUBZyLzSbQlYKsmk1kLrFqHjoqJ5m-0nx-u1i969LdGH5tUtexsvNiwGowCVYJE6XVOqd9732DWL3sxl_9EAbYbKmqGyZlNZxMs1vsLWdV4ZjBF_LJRSITJRcBYVsNqE76Zqt7QhWk_-b_2lX4zVcmX-fusLg12Lmg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ma, Zhao</creator><creator>Nie, Lichao</creator><creator>Zhou, Pengfei</creator><creator>Deng, Zhaoyang</creator><creator>Guo, Lei</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3177-4052</orcidid><orcidid>https://orcid.org/0000-0001-9468-2329</orcidid><orcidid>https://orcid.org/0000-0003-0609-416X</orcidid></search><sort><creationdate>2021</creationdate><title>Ant Colony Optimization Inversion Using the L1 Norm in Advanced Tunnel Detection</title><author>Ma, Zhao ; Nie, Lichao ; Zhou, Pengfei ; Deng, Zhaoyang ; Guo, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ae572e03e83be0cd858d1c1e6f22e9c7187a49db81e8ca2add6ddbe1f56904b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Food</topic><topic>Foraging behavior</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Pheromones</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Trails</topic><topic>Tunnel construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhao</creatorcontrib><creatorcontrib>Nie, Lichao</creatorcontrib><creatorcontrib>Zhou, Pengfei</creatorcontrib><creatorcontrib>Deng, Zhaoyang</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhao</au><au>Nie, Lichao</au><au>Zhou, Pengfei</au><au>Deng, Zhaoyang</au><au>Guo, Lei</au><au>Hanne, Thomas</au><au>Thomas Hanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant Colony Optimization Inversion Using the L1 Norm in Advanced Tunnel Detection</atitle><jtitle>Mathematical problems in engineering</jtitle><stitle>MATH PROBL ENG</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>During the construction of the tunnel, there may be water-bearing anomalous structures such as fault fracture zone. In order to ensure the safety of the tunnel, it is necessary to carry out advanced tunnel detection. The traditional linear inversion method is highly dependent on the initial model in the tunnel resistivity inversion, which makes the inversion results falling into the local optimal optimum rather than the global one. Therefore, an inversion method for tunnel resistivity advanced detection based on ant colony algorithm is proposed in this paper. In order to improve the accuracy of tunnel advanced detection of deep anomalous bodies, an ant colony optimization (ACO) inversion is used by integrating depth weighting into the inversion function. At the same time, in view of the high efficiency and low cost of one-dimension inversion and the advantages of L1 norm in boundary characterization, a one-dimensional ant colony algorithm is adopted in this paper. In order to evaluate the performance of the algorithm, two sets of numerical simulations were carried out. Finally, the application of the actual tunnel water-bearing anomalous structure was carried out in a real example to evaluate the application effect, and it was verified by excavation exposure.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/6649454</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3177-4052</orcidid><orcidid>https://orcid.org/0000-0001-9468-2329</orcidid><orcidid>https://orcid.org/0000-0003-0609-416X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-7
issn 1024-123X
1563-5147
language eng
recordid cdi_webofscience_primary_000663675200012
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Ant colony optimization
Electrical resistivity
Electrodes
Engineering
Engineering, Multidisciplinary
Food
Foraging behavior
Mathematical models
Mathematics
Mathematics, Interdisciplinary Applications
Optimization
Performance evaluation
Pheromones
Physical Sciences
Science & Technology
Technology
Trails
Tunnel construction
title Ant Colony Optimization Inversion Using the L1 Norm in Advanced Tunnel Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20Colony%20Optimization%20Inversion%20Using%20the%20L1%20Norm%20in%20Advanced%20Tunnel%20Detection&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Ma,%20Zhao&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6649454&rft_dat=%3Cproquest_webof%3E2518011962%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518011962&rft_id=info:pmid/&rfr_iscdi=true