Hydrophobic-hydrophilic crown-like structure enables aquatic insects to reside effectively beneath the water surface
Various insects utilise hydrophobic biological surfaces to live on the surface of water, while other organisms possess hydrophilic properties that enable them to live within a water column. Dixidae larvae reside, without being submerged, just below the water surface. However, little is known about h...
Gespeichert in:
Veröffentlicht in: | Communications biology 2021-06, Vol.4 (1), p.708-708, Article 708 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various insects utilise hydrophobic biological surfaces to live on the surface of water, while other organisms possess hydrophilic properties that enable them to live within a water column. Dixidae larvae reside, without being submerged, just below the water surface. However, little is known about how these larvae live in such an ecological niche. Herein, we use larvae of
Dixa longistyla
(Diptera: Dixidae) as experimental specimens and reveal their characteristics. A complex crown-like structure on the abdomen consists of hydrophobic and hydrophilic elements. The combination of these contrasting features enables the larvae to maintain their position as well as to move unidirectionally. Their hydrophobic region leverages water surface tension to function as an adhesive disc. By using the resistance of water, the hydrophilic region serves as a rudder during locomotion.
Suzuki, Takaku, Hariyama and colleagues report on a crown-like structure found on the heads of midge larvae. This structure, analysed using scanning electron microscopy and experimental methods, enables subsurface adhesion and aids in control of locomotion in this region of the water column. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-021-02228-5 |