Lung macrophages drive mucus production and steroid-resistant inflammation in chronic bronchitis

Background: Patients with chronic obstructive pulmonary disease (COPD) frequently suffer from chronic bronchitis (CB) and display steroid-resistant inflammation with increased sputum neutrophils and macrophages. Recently, a causal link between mucus hyper-concentration and disease progression of CB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory research 2021-06, Vol.22 (1), p.1-172, Article 172
Hauptverfasser: Andelid, Kristina, Ost, Karolina, Andersson, Anders, Mohamed, Esha, Jevnikar, Zala, Vanfleteren, Lowie E. G. W., Goransson, Melker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Patients with chronic obstructive pulmonary disease (COPD) frequently suffer from chronic bronchitis (CB) and display steroid-resistant inflammation with increased sputum neutrophils and macrophages. Recently, a causal link between mucus hyper-concentration and disease progression of CB has been suggested. Methods: In this study, we have evaluated the steroid sensitivity of purified, patient-derived sputum and alveolar macrophages and used a novel mechanistic cross-talk assay to examine how macrophages and bronchial epithelial cells cross-talk to regulate MUC5B production. Results: We demonstrate that sputum plug macrophages isolated from COPD patients with chronic bronchitis (COPD/CB) are chronically activated and only partially respond to ex vivo corticosteroid treatment compared to alveolar macrophages isolated from lung resections. Further, we show that pseudo-stratified bronchial epithelial cells grown in air-liquid-interface are inert to direct bacterial lipopolysaccharide stimulation and that macrophages are able to relay this signal and activate the CREB/AP-1 transcription factor complex and subsequent MUC5B expression in epithelial cells through a soluble mediator. Using recombinant protein and neutralizing antibodies, we identified a key role for TNF alpha in this cross-talk. Conclusions: For the first time, we describe ex vivo pharmacology in purified human sputum macrophages isolated from chronic bronchitis COPD patients and identify a possible basis for the steroid resistance frequently seen in this population. Our data pinpoint a critical role for chronically activated sputum macrophages in perpetuating TNF alpha-dependent signals driving mucus hyper-production. Targeting the chronically activated mucus plug macrophage phenotype and interfering with aberrant macrophage-epithelial cross-talk may provide a novel strategy to resolve chronic inflammatory lung disease.
ISSN:1465-993X
1465-9921
1465-993X
1465-9921
DOI:10.1186/s12931-021-01762-4