Critical Interactions Between the SARS-CoV‑2 Spike Glycoprotein and the Human ACE2 Receptor

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells by binding its spike (S) glycoproteins to angiotensin-converting enzyme 2 (ACE2) receptors and causes the coronavirus disease 2019 (COVID-19). Therapeutic approaches to prevent SARS-CoV-2 infection are mostly focused on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-06, Vol.125 (21), p.5537-5548
Hauptverfasser: Taka, Elhan, Yilmaz, Sema Z, Golcuk, Mert, Kilinc, Ceren, Aktas, Umut, Yildiz, Ahmet, Gur, Mert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5548
container_issue 21
container_start_page 5537
container_title The journal of physical chemistry. B
container_volume 125
creator Taka, Elhan
Yilmaz, Sema Z
Golcuk, Mert
Kilinc, Ceren
Aktas, Umut
Yildiz, Ahmet
Gur, Mert
description Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells by binding its spike (S) glycoproteins to angiotensin-converting enzyme 2 (ACE2) receptors and causes the coronavirus disease 2019 (COVID-19). Therapeutic approaches to prevent SARS-CoV-2 infection are mostly focused on blocking S-ACE2 binding, but critical residues that stabilize this interaction are not well understood. By performing all-atom molecular dynamics (MD) simulations, we identified an extended network of salt bridges, hydrophobic and electrostatic interactions, and hydrogen bonds between the receptor-binding domain (RBD) of the S protein and ACE2. Mutagenesis of these residues on the RBD was not sufficient to destabilize binding but reduced the average work to unbind the S protein from ACE2. In particular, the hydrophobic end of RBD serves as the main anchor site and is the last to unbind from ACE2 under force. We propose that blocking the hydrophobic surface of RBD via neutralizing antibodies could prove to be an effective strategy to inhibit S-ACE2 interactions.
doi_str_mv 10.1021/acs.jpcb.1c02048
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_webofscience_primary_000661116600009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a261572704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-e17281afe49b34a0f6afc7e03954d8aaef31545fee6a6ec678fc85ceae9c8f1a3</originalsourceid><addsrcrecordid>eNqNkcFOGzEQhi3UCihw51T53m6wvbte76VSuqKAhFSJlN4qa-KMwTSxV14HxI1X6Cv2SXBIiNpDpR4sj-Tvnxl9JuSYsxFngp-AGUZ3vZmOuGGCVWqH7PNasCKf5s2mlpzJPfJuGO4YE7VQcpfslWXbtFyKffKjiy45A3N64RNGMMkFP9DPmB4QPU23SCfjq0nRhe-_n34JOundT6Rn80cT-hgSOk_Bz1648-UCPB13p4JeocE-hXhI3lqYD3i0uQ_I9ZfTb915cfn17KIbXxZQtW0qkDdCcbBYtdOyAmYlWNMgK9u6mikAtCWvq9oiSpBoZKOsUbVBwNYoy6E8IJ_WffvldIEzgz5FmOs-ugXERx3A6b9fvLvVN-FeK16yWtS5AVs3MDEMQ0S7zXKmV6p1Vq1XqvVGdY68_3PmNvDqNgMf1sADToMdjENvcIsxxqTknEuZK9ZmWv0_3bkEq4_qwtKnHP24jr7sGJbRZ9f_XvwZR12uHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical Interactions Between the SARS-CoV‑2 Spike Glycoprotein and the Human ACE2 Receptor</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Taka, Elhan ; Yilmaz, Sema Z ; Golcuk, Mert ; Kilinc, Ceren ; Aktas, Umut ; Yildiz, Ahmet ; Gur, Mert</creator><creatorcontrib>Taka, Elhan ; Yilmaz, Sema Z ; Golcuk, Mert ; Kilinc, Ceren ; Aktas, Umut ; Yildiz, Ahmet ; Gur, Mert</creatorcontrib><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells by binding its spike (S) glycoproteins to angiotensin-converting enzyme 2 (ACE2) receptors and causes the coronavirus disease 2019 (COVID-19). Therapeutic approaches to prevent SARS-CoV-2 infection are mostly focused on blocking S-ACE2 binding, but critical residues that stabilize this interaction are not well understood. By performing all-atom molecular dynamics (MD) simulations, we identified an extended network of salt bridges, hydrophobic and electrostatic interactions, and hydrogen bonds between the receptor-binding domain (RBD) of the S protein and ACE2. Mutagenesis of these residues on the RBD was not sufficient to destabilize binding but reduced the average work to unbind the S protein from ACE2. In particular, the hydrophobic end of RBD serves as the main anchor site and is the last to unbind from ACE2 under force. We propose that blocking the hydrophobic surface of RBD via neutralizing antibodies could prove to be an effective strategy to inhibit S-ACE2 interactions.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c02048</identifier><identifier>PMID: 33979162</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Angiotensin-Converting Enzyme 2 ; B: Biophysical and Biochemical Systems and Processes ; Chemistry ; Chemistry, Physical ; COVID-19 ; Humans ; Peptidyl-Dipeptidase A - genetics ; Peptidyl-Dipeptidase A - metabolism ; Physical Sciences ; Protein Binding ; SARS-CoV-2 ; Science &amp; Technology ; Spike Glycoprotein, Coronavirus</subject><ispartof>The journal of physical chemistry. B, 2021-06, Vol.125 (21), p.5537-5548</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>35</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000661116600009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a499t-e17281afe49b34a0f6afc7e03954d8aaef31545fee6a6ec678fc85ceae9c8f1a3</citedby><cites>FETCH-LOGICAL-a499t-e17281afe49b34a0f6afc7e03954d8aaef31545fee6a6ec678fc85ceae9c8f1a3</cites><orcidid>0000-0001-5476-8160 ; 0000-0002-4839-3777 ; 0000-0003-0983-4397 ; 0000-0002-4017-5839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c02048$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c02048$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2767,27083,27931,27932,39265,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33979162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taka, Elhan</creatorcontrib><creatorcontrib>Yilmaz, Sema Z</creatorcontrib><creatorcontrib>Golcuk, Mert</creatorcontrib><creatorcontrib>Kilinc, Ceren</creatorcontrib><creatorcontrib>Aktas, Umut</creatorcontrib><creatorcontrib>Yildiz, Ahmet</creatorcontrib><creatorcontrib>Gur, Mert</creatorcontrib><title>Critical Interactions Between the SARS-CoV‑2 Spike Glycoprotein and the Human ACE2 Receptor</title><title>The journal of physical chemistry. B</title><addtitle>J PHYS CHEM B</addtitle><addtitle>J. Phys. Chem. B</addtitle><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells by binding its spike (S) glycoproteins to angiotensin-converting enzyme 2 (ACE2) receptors and causes the coronavirus disease 2019 (COVID-19). Therapeutic approaches to prevent SARS-CoV-2 infection are mostly focused on blocking S-ACE2 binding, but critical residues that stabilize this interaction are not well understood. By performing all-atom molecular dynamics (MD) simulations, we identified an extended network of salt bridges, hydrophobic and electrostatic interactions, and hydrogen bonds between the receptor-binding domain (RBD) of the S protein and ACE2. Mutagenesis of these residues on the RBD was not sufficient to destabilize binding but reduced the average work to unbind the S protein from ACE2. In particular, the hydrophobic end of RBD serves as the main anchor site and is the last to unbind from ACE2 under force. We propose that blocking the hydrophobic surface of RBD via neutralizing antibodies could prove to be an effective strategy to inhibit S-ACE2 interactions.</description><subject>Angiotensin-Converting Enzyme 2</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>COVID-19</subject><subject>Humans</subject><subject>Peptidyl-Dipeptidase A - genetics</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>SARS-CoV-2</subject><subject>Science &amp; Technology</subject><subject>Spike Glycoprotein, Coronavirus</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkcFOGzEQhi3UCihw51T53m6wvbte76VSuqKAhFSJlN4qa-KMwTSxV14HxI1X6Cv2SXBIiNpDpR4sj-Tvnxl9JuSYsxFngp-AGUZ3vZmOuGGCVWqH7PNasCKf5s2mlpzJPfJuGO4YE7VQcpfslWXbtFyKffKjiy45A3N64RNGMMkFP9DPmB4QPU23SCfjq0nRhe-_n34JOundT6Rn80cT-hgSOk_Bz1648-UCPB13p4JeocE-hXhI3lqYD3i0uQ_I9ZfTb915cfn17KIbXxZQtW0qkDdCcbBYtdOyAmYlWNMgK9u6mikAtCWvq9oiSpBoZKOsUbVBwNYoy6E8IJ_WffvldIEzgz5FmOs-ugXERx3A6b9fvLvVN-FeK16yWtS5AVs3MDEMQ0S7zXKmV6p1Vq1XqvVGdY68_3PmNvDqNgMf1sADToMdjENvcIsxxqTknEuZK9ZmWv0_3bkEq4_qwtKnHP24jr7sGJbRZ9f_XvwZR12uHQ</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Taka, Elhan</creator><creator>Yilmaz, Sema Z</creator><creator>Golcuk, Mert</creator><creator>Kilinc, Ceren</creator><creator>Aktas, Umut</creator><creator>Yildiz, Ahmet</creator><creator>Gur, Mert</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5476-8160</orcidid><orcidid>https://orcid.org/0000-0002-4839-3777</orcidid><orcidid>https://orcid.org/0000-0003-0983-4397</orcidid><orcidid>https://orcid.org/0000-0002-4017-5839</orcidid></search><sort><creationdate>20210603</creationdate><title>Critical Interactions Between the SARS-CoV‑2 Spike Glycoprotein and the Human ACE2 Receptor</title><author>Taka, Elhan ; Yilmaz, Sema Z ; Golcuk, Mert ; Kilinc, Ceren ; Aktas, Umut ; Yildiz, Ahmet ; Gur, Mert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-e17281afe49b34a0f6afc7e03954d8aaef31545fee6a6ec678fc85ceae9c8f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiotensin-Converting Enzyme 2</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>COVID-19</topic><topic>Humans</topic><topic>Peptidyl-Dipeptidase A - genetics</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>SARS-CoV-2</topic><topic>Science &amp; Technology</topic><topic>Spike Glycoprotein, Coronavirus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taka, Elhan</creatorcontrib><creatorcontrib>Yilmaz, Sema Z</creatorcontrib><creatorcontrib>Golcuk, Mert</creatorcontrib><creatorcontrib>Kilinc, Ceren</creatorcontrib><creatorcontrib>Aktas, Umut</creatorcontrib><creatorcontrib>Yildiz, Ahmet</creatorcontrib><creatorcontrib>Gur, Mert</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taka, Elhan</au><au>Yilmaz, Sema Z</au><au>Golcuk, Mert</au><au>Kilinc, Ceren</au><au>Aktas, Umut</au><au>Yildiz, Ahmet</au><au>Gur, Mert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Interactions Between the SARS-CoV‑2 Spike Glycoprotein and the Human ACE2 Receptor</atitle><jtitle>The journal of physical chemistry. B</jtitle><stitle>J PHYS CHEM B</stitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-06-03</date><risdate>2021</risdate><volume>125</volume><issue>21</issue><spage>5537</spage><epage>5548</epage><pages>5537-5548</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells by binding its spike (S) glycoproteins to angiotensin-converting enzyme 2 (ACE2) receptors and causes the coronavirus disease 2019 (COVID-19). Therapeutic approaches to prevent SARS-CoV-2 infection are mostly focused on blocking S-ACE2 binding, but critical residues that stabilize this interaction are not well understood. By performing all-atom molecular dynamics (MD) simulations, we identified an extended network of salt bridges, hydrophobic and electrostatic interactions, and hydrogen bonds between the receptor-binding domain (RBD) of the S protein and ACE2. Mutagenesis of these residues on the RBD was not sufficient to destabilize binding but reduced the average work to unbind the S protein from ACE2. In particular, the hydrophobic end of RBD serves as the main anchor site and is the last to unbind from ACE2 under force. We propose that blocking the hydrophobic surface of RBD via neutralizing antibodies could prove to be an effective strategy to inhibit S-ACE2 interactions.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33979162</pmid><doi>10.1021/acs.jpcb.1c02048</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5476-8160</orcidid><orcidid>https://orcid.org/0000-0002-4839-3777</orcidid><orcidid>https://orcid.org/0000-0003-0983-4397</orcidid><orcidid>https://orcid.org/0000-0002-4017-5839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-06, Vol.125 (21), p.5537-5548
issn 1520-6106
1520-5207
language eng
recordid cdi_webofscience_primary_000661116600009
source MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Angiotensin-Converting Enzyme 2
B: Biophysical and Biochemical Systems and Processes
Chemistry
Chemistry, Physical
COVID-19
Humans
Peptidyl-Dipeptidase A - genetics
Peptidyl-Dipeptidase A - metabolism
Physical Sciences
Protein Binding
SARS-CoV-2
Science & Technology
Spike Glycoprotein, Coronavirus
title Critical Interactions Between the SARS-CoV‑2 Spike Glycoprotein and the Human ACE2 Receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Interactions%20Between%20the%20SARS-CoV%E2%80%912%20Spike%20Glycoprotein%20and%20the%20Human%20ACE2%20Receptor&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Taka,%20Elhan&rft.date=2021-06-03&rft.volume=125&rft.issue=21&rft.spage=5537&rft.epage=5548&rft.pages=5537-5548&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c02048&rft_dat=%3Cacs_webof%3Ea261572704%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33979162&rfr_iscdi=true