Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing

Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-05, Vol.21 (11), p.3723, Article 3723
Hauptverfasser: Wu, Robert, Lamontagne-Halle, Pierrick, McKenzie, Jeffrey M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3723
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Wu, Robert
Lamontagne-Halle, Pierrick
McKenzie, Jeffrey M.
description Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challenging. To better understand and quantify the errors associated with aFO-DTS soil moisture measurements, we use a parametric numerical modeling approach to evaluate different error factors for uniform soil. A thermo-hydrogeologic, unsaturated numerical model is used to simulate a 0.01 m by 0.01 m two-dimensional domain, including soil and a fiber-optic cable. Results from the model are compared to soil moisture values calculated using the commonly used T-cum calibration method for aFO-DTS. The model is found to have high accuracy between measured and observed saturations for static hydrologic conditions but shows discrepancies for more realistic settings with active recharge. We evaluate the performance of aFO-DTS soil moisture calculations for various scenarios, including varying recharge duration and heterogeneous soils. The aFO-DTS accuracy decreases as the variability in soil properties and intensity of recharge events increases. Further, we show that the burial of the fiber-optic cable within soil may adversely affect calculated results. The results demonstrate the need for careful selection of calibration data for this emerging method of measuring soil moisture content.
doi_str_mv 10.3390/s21113723
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000660667500001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_57a35591ff894c4ebba11e5bb054a6d2</doaj_id><sourcerecordid>2539981820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-1d87283ef8bdabba4e5c12886fc6ee2c9cb00b5014c5fa5b089bb6fad2cdc3c43</originalsourceid><addsrcrecordid>eNqNkk1r3DAQQE1padK0h_4DQy8txa2-LV8KwW2aQEIOSc5CkscbLV5pI8kJ-feVs2FpeioIJEZPT8PMVNVHjL5R2qHviWCMaUvoq-oQM8IaSQh6_df5oHqX0hohQimVb6sDylCLOywOq7sbbyFm7Xx2kGrn6wvQaY7Or-qr4Kb6IriU5wh1H3wGn-sHl2_rY5vdPUyP9SnoDEN94gzE5nKbna1_lgfRmXmJX8NmC1E_Ca7Ap6J9X70Z9ZTgw_N-VN2c_LruT5vzy99n_fF5YxkTucGDbImkMEozaGM0A24xkVKMVgAQ21mDkOEIM8tHzQ2SnTFi1AOxg6WW0aPqbOcdgl6rbXQbHR9V0E49BUJcKR1LvhMo3mrKeYfHUXbMMijfYQzcGMSZFgMprh8713Y2GxhsqUPU0wvpyxvvbtUq3CuJO4kYKoLPz4IY7mZIWW1csjBN2kOYkyKcCiaW7hT00z_oOszRl1ItVNdJLMki_LKjbAwpRRj3yWCklqFQ-6Eo7Ncd-wAmjMk6KD3f8wghIcpqeTkhXGj5_3Tvss4u-D7MPtM_f-TLIg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539981820</pqid></control><display><type>article</type><title>Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Robert ; Lamontagne-Halle, Pierrick ; McKenzie, Jeffrey M.</creator><creatorcontrib>Wu, Robert ; Lamontagne-Halle, Pierrick ; McKenzie, Jeffrey M.</creatorcontrib><description>Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challenging. To better understand and quantify the errors associated with aFO-DTS soil moisture measurements, we use a parametric numerical modeling approach to evaluate different error factors for uniform soil. A thermo-hydrogeologic, unsaturated numerical model is used to simulate a 0.01 m by 0.01 m two-dimensional domain, including soil and a fiber-optic cable. Results from the model are compared to soil moisture values calculated using the commonly used T-cum calibration method for aFO-DTS. The model is found to have high accuracy between measured and observed saturations for static hydrologic conditions but shows discrepancies for more realistic settings with active recharge. We evaluate the performance of aFO-DTS soil moisture calculations for various scenarios, including varying recharge duration and heterogeneous soils. The aFO-DTS accuracy decreases as the variability in soil properties and intensity of recharge events increases. Further, we show that the burial of the fiber-optic cable within soil may adversely affect calculated results. The results demonstrate the need for careful selection of calibration data for this emerging method of measuring soil moisture content.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21113723</identifier><identifier>PMID: 34071916</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Calibration ; Chemistry ; Chemistry, Analytical ; Conductivity ; Creeks &amp; streams ; distributed temperature sensing ; Engineering ; Engineering, Electrical &amp; Electronic ; Environmental monitoring ; fiber optic ; FO-DTS ; Heat conductivity ; Hydrology ; Instruments &amp; Instrumentation ; Measurement methods ; Mineralogy ; Model accuracy ; Moisture content ; Numerical models ; Physical Sciences ; Science &amp; Technology ; Soil conditions ; Soil moisture ; Soil properties ; Technology ; Two dimensional models ; Unsaturated soils</subject><ispartof>Sensors (Basel, Switzerland), 2021-05, Vol.21 (11), p.3723, Article 3723</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000660667500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c446t-1d87283ef8bdabba4e5c12886fc6ee2c9cb00b5014c5fa5b089bb6fad2cdc3c43</citedby><cites>FETCH-LOGICAL-c446t-1d87283ef8bdabba4e5c12886fc6ee2c9cb00b5014c5fa5b089bb6fad2cdc3c43</cites><orcidid>0000-0001-7831-7145 ; 0000-0002-0469-6469 ; 0000-0002-3353-4709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198040/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198040/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Wu, Robert</creatorcontrib><creatorcontrib>Lamontagne-Halle, Pierrick</creatorcontrib><creatorcontrib>McKenzie, Jeffrey M.</creatorcontrib><title>Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><description>Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challenging. To better understand and quantify the errors associated with aFO-DTS soil moisture measurements, we use a parametric numerical modeling approach to evaluate different error factors for uniform soil. A thermo-hydrogeologic, unsaturated numerical model is used to simulate a 0.01 m by 0.01 m two-dimensional domain, including soil and a fiber-optic cable. Results from the model are compared to soil moisture values calculated using the commonly used T-cum calibration method for aFO-DTS. The model is found to have high accuracy between measured and observed saturations for static hydrologic conditions but shows discrepancies for more realistic settings with active recharge. We evaluate the performance of aFO-DTS soil moisture calculations for various scenarios, including varying recharge duration and heterogeneous soils. The aFO-DTS accuracy decreases as the variability in soil properties and intensity of recharge events increases. Further, we show that the burial of the fiber-optic cable within soil may adversely affect calculated results. The results demonstrate the need for careful selection of calibration data for this emerging method of measuring soil moisture content.</description><subject>Calibration</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Conductivity</subject><subject>Creeks &amp; streams</subject><subject>distributed temperature sensing</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Environmental monitoring</subject><subject>fiber optic</subject><subject>FO-DTS</subject><subject>Heat conductivity</subject><subject>Hydrology</subject><subject>Instruments &amp; Instrumentation</subject><subject>Measurement methods</subject><subject>Mineralogy</subject><subject>Model accuracy</subject><subject>Moisture content</subject><subject>Numerical models</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Soil properties</subject><subject>Technology</subject><subject>Two dimensional models</subject><subject>Unsaturated soils</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1r3DAQQE1padK0h_4DQy8txa2-LV8KwW2aQEIOSc5CkscbLV5pI8kJ-feVs2FpeioIJEZPT8PMVNVHjL5R2qHviWCMaUvoq-oQM8IaSQh6_df5oHqX0hohQimVb6sDylCLOywOq7sbbyFm7Xx2kGrn6wvQaY7Or-qr4Kb6IriU5wh1H3wGn-sHl2_rY5vdPUyP9SnoDEN94gzE5nKbna1_lgfRmXmJX8NmC1E_Ca7Ap6J9X70Z9ZTgw_N-VN2c_LruT5vzy99n_fF5YxkTucGDbImkMEozaGM0A24xkVKMVgAQ21mDkOEIM8tHzQ2SnTFi1AOxg6WW0aPqbOcdgl6rbXQbHR9V0E49BUJcKR1LvhMo3mrKeYfHUXbMMijfYQzcGMSZFgMprh8713Y2GxhsqUPU0wvpyxvvbtUq3CuJO4kYKoLPz4IY7mZIWW1csjBN2kOYkyKcCiaW7hT00z_oOszRl1ItVNdJLMki_LKjbAwpRRj3yWCklqFQ-6Eo7Ncd-wAmjMk6KD3f8wghIcpqeTkhXGj5_3Tvss4u-D7MPtM_f-TLIg</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Wu, Robert</creator><creator>Lamontagne-Halle, Pierrick</creator><creator>McKenzie, Jeffrey M.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7831-7145</orcidid><orcidid>https://orcid.org/0000-0002-0469-6469</orcidid><orcidid>https://orcid.org/0000-0002-3353-4709</orcidid></search><sort><creationdate>20210527</creationdate><title>Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing</title><author>Wu, Robert ; Lamontagne-Halle, Pierrick ; McKenzie, Jeffrey M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-1d87283ef8bdabba4e5c12886fc6ee2c9cb00b5014c5fa5b089bb6fad2cdc3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calibration</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Conductivity</topic><topic>Creeks &amp; streams</topic><topic>distributed temperature sensing</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Environmental monitoring</topic><topic>fiber optic</topic><topic>FO-DTS</topic><topic>Heat conductivity</topic><topic>Hydrology</topic><topic>Instruments &amp; Instrumentation</topic><topic>Measurement methods</topic><topic>Mineralogy</topic><topic>Model accuracy</topic><topic>Moisture content</topic><topic>Numerical models</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Soil properties</topic><topic>Technology</topic><topic>Two dimensional models</topic><topic>Unsaturated soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Robert</creatorcontrib><creatorcontrib>Lamontagne-Halle, Pierrick</creatorcontrib><creatorcontrib>McKenzie, Jeffrey M.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Robert</au><au>Lamontagne-Halle, Pierrick</au><au>McKenzie, Jeffrey M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><date>2021-05-27</date><risdate>2021</risdate><volume>21</volume><issue>11</issue><spage>3723</spage><pages>3723-</pages><artnum>3723</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Actively heated fiber-optic distributed temperature sensing (aFO-DTS) measures soil moisture content at sub-meter intervals across kilometres of fiber-optic cable. The technology has great potential for environmental monitoring but calibration at field scales with variable soil conditions is challenging. To better understand and quantify the errors associated with aFO-DTS soil moisture measurements, we use a parametric numerical modeling approach to evaluate different error factors for uniform soil. A thermo-hydrogeologic, unsaturated numerical model is used to simulate a 0.01 m by 0.01 m two-dimensional domain, including soil and a fiber-optic cable. Results from the model are compared to soil moisture values calculated using the commonly used T-cum calibration method for aFO-DTS. The model is found to have high accuracy between measured and observed saturations for static hydrologic conditions but shows discrepancies for more realistic settings with active recharge. We evaluate the performance of aFO-DTS soil moisture calculations for various scenarios, including varying recharge duration and heterogeneous soils. The aFO-DTS accuracy decreases as the variability in soil properties and intensity of recharge events increases. Further, we show that the burial of the fiber-optic cable within soil may adversely affect calculated results. The results demonstrate the need for careful selection of calibration data for this emerging method of measuring soil moisture content.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34071916</pmid><doi>10.3390/s21113723</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7831-7145</orcidid><orcidid>https://orcid.org/0000-0002-0469-6469</orcidid><orcidid>https://orcid.org/0000-0002-3353-4709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-05, Vol.21 (11), p.3723, Article 3723
issn 1424-8220
1424-8220
language eng
recordid cdi_webofscience_primary_000660667500001CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Calibration
Chemistry
Chemistry, Analytical
Conductivity
Creeks & streams
distributed temperature sensing
Engineering
Engineering, Electrical & Electronic
Environmental monitoring
fiber optic
FO-DTS
Heat conductivity
Hydrology
Instruments & Instrumentation
Measurement methods
Mineralogy
Model accuracy
Moisture content
Numerical models
Physical Sciences
Science & Technology
Soil conditions
Soil moisture
Soil properties
Technology
Two dimensional models
Unsaturated soils
title Uncertainties in Measuring Soil Moisture Content with Actively Heated Fiber-Optic Distributed Temperature Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainties%20in%20Measuring%20Soil%20Moisture%20Content%20with%20Actively%20Heated%20Fiber-Optic%20Distributed%20Temperature%20Sensing&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Wu,%20Robert&rft.date=2021-05-27&rft.volume=21&rft.issue=11&rft.spage=3723&rft.pages=3723-&rft.artnum=3723&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21113723&rft_dat=%3Cproquest_webof%3E2539981820%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539981820&rft_id=info:pmid/34071916&rft_doaj_id=oai_doaj_org_article_57a35591ff894c4ebba11e5bb054a6d2&rfr_iscdi=true