Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction
Powder X-ray diffraction is one of the key techniques used to characterize the inorganic structure of colloidal nanocrystals. The comparatively low scattering factor of nuclei of the organic capping ligands and their propensity to be disordered has led investigators to typically consider them effect...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-05, Vol.12 (1), p.2663-2663, Article 2663 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2663 |
---|---|
container_issue | 1 |
container_start_page | 2663 |
container_title | Nature communications |
container_volume | 12 |
creator | Calvin, Jason J. Kaufman, Tierni M. Sedlak, Adam B. Crook, Michelle F. Alivisatos, A. Paul |
description | Powder X-ray diffraction is one of the key techniques used to characterize the inorganic structure of colloidal nanocrystals. The comparatively low scattering factor of nuclei of the organic capping ligands and their propensity to be disordered has led investigators to typically consider them effectively invisible to this technique. In this report, we demonstrate that a commonly observed powder X-ray diffraction peak around
q
=
1.4
Å
−
1
observed in many small, colloidal quantum dots can be assigned to well-ordered aliphatic ligands bound to and capping the nanocrystals. This conclusion differs from a variety of explanations ascribed by previous sources, the majority of which propose an excess of organic material. Additionally, we demonstrate that the observed ligand peak is a sensitive probe of ligand shell ordering. Changes as a function of ligand length, geometry, and temperature can all be readily observed by X-ray diffraction and manipulated to achieve desired outcomes for the final colloidal system.
The degree of ligand ordering on colloidal inorganic nanocrystal surfaces has long been a topic of interest. Here, the authors show that a well-known powder X-ray diffraction feature observed in prior works, frequently assigned to excess ligands, corresponds to bound and ordered capping ligands. |
doi_str_mv | 10.1038/s41467-021-22947-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000658723900011CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6a70a0dab9604fc9b2b18bc6c4f012be</doaj_id><sourcerecordid>2525226320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-e312a255875084771e8e9fb9fee961af8b8bb6e9104e35fa8623296ed8f570e43</originalsourceid><addsrcrecordid>eNqNkl1vFCEUhidGY5vaP-CFmeiNiRnlaxi4MTEbP5o06Y0m3hFgDls2u7AFZtv-e9lOXVsvjNxw4DznhQNv07zE6D1GVHzIDDM-dIjgjhDJhu7mSXNMEMMdHgh9-iA-ak5zXqE6qMSCsefNEaVy4Fjw42Z1YTKknS4-hja6NqYREox1XurgbWv1duvDsl37uh5zW6kMG29jGCdb9pmrSYcybdoxltzuvG638bpqtD-7pG_b0TuXtN3Lv2ieOb3OcHo_nzQ_vnz-vvjWnV98PVt8Ou8sp7R0QDHRpO_F0CPBhgGDAOmMdACSY-2EEcZwkBgxoL3TghNKJIdRuH5AwOhJczbrjlGv1Db5jU63Kmqv7jZqZ0qn4u0aFNcD0mjURnLEnJWGGCyM5ZY5hImBqvVx1tpOZgOjhVCSXj8SfZwJ_lIt404JjCkZeBV4PQvEXLzK1hewl_X1AtiisMAM932F3t6fkuLVBLmojc8W1msdIE5ZkZ7wSko8VPTNX-gqTinU99xTPSGcElQpMlM2xZwTuMONMVJ7-6jZPqraR93ZR93UolcPez2U_DZLBcQMXIOJrvYCwcIBq_7i9dMIlTXCeOHLnakWcQqllr77_9JK05nOlQhLSH-a_Mf9fwGZlfKR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525226320</pqid></control><display><type>article</type><title>Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Calvin, Jason J. ; Kaufman, Tierni M. ; Sedlak, Adam B. ; Crook, Michelle F. ; Alivisatos, A. Paul</creator><creatorcontrib>Calvin, Jason J. ; Kaufman, Tierni M. ; Sedlak, Adam B. ; Crook, Michelle F. ; Alivisatos, A. Paul ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Powder X-ray diffraction is one of the key techniques used to characterize the inorganic structure of colloidal nanocrystals. The comparatively low scattering factor of nuclei of the organic capping ligands and their propensity to be disordered has led investigators to typically consider them effectively invisible to this technique. In this report, we demonstrate that a commonly observed powder X-ray diffraction peak around
q
=
1.4
Å
−
1
observed in many small, colloidal quantum dots can be assigned to well-ordered aliphatic ligands bound to and capping the nanocrystals. This conclusion differs from a variety of explanations ascribed by previous sources, the majority of which propose an excess of organic material. Additionally, we demonstrate that the observed ligand peak is a sensitive probe of ligand shell ordering. Changes as a function of ligand length, geometry, and temperature can all be readily observed by X-ray diffraction and manipulated to achieve desired outcomes for the final colloidal system.
The degree of ligand ordering on colloidal inorganic nanocrystal surfaces has long been a topic of interest. Here, the authors show that a well-known powder X-ray diffraction feature observed in prior works, frequently assigned to excess ligands, corresponds to bound and ordered capping ligands.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-22947-x</identifier><identifier>PMID: 33976186</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/1017 ; 639/638/298 ; Capping ; Colloids ; Crystals ; Humanities and Social Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ligands ; MATERIALS SCIENCE ; multidisciplinary ; Multidisciplinary Sciences ; Nanocrystals ; Quantum dots ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>Nature communications, 2021-05, Vol.12 (1), p.2663-2663, Article 2663</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>36</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000658723900011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c633t-e312a255875084771e8e9fb9fee961af8b8bb6e9104e35fa8623296ed8f570e43</citedby><cites>FETCH-LOGICAL-c633t-e312a255875084771e8e9fb9fee961af8b8bb6e9104e35fa8623296ed8f570e43</cites><orcidid>0000-0001-8381-2466 ; 0000-0002-3895-8682 ; 0000-0003-3550-0868 ; 0000000238958682 ; 0000000183812466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113276/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113276/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33976186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1814155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvin, Jason J.</creatorcontrib><creatorcontrib>Kaufman, Tierni M.</creatorcontrib><creatorcontrib>Sedlak, Adam B.</creatorcontrib><creatorcontrib>Crook, Michelle F.</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Powder X-ray diffraction is one of the key techniques used to characterize the inorganic structure of colloidal nanocrystals. The comparatively low scattering factor of nuclei of the organic capping ligands and their propensity to be disordered has led investigators to typically consider them effectively invisible to this technique. In this report, we demonstrate that a commonly observed powder X-ray diffraction peak around
q
=
1.4
Å
−
1
observed in many small, colloidal quantum dots can be assigned to well-ordered aliphatic ligands bound to and capping the nanocrystals. This conclusion differs from a variety of explanations ascribed by previous sources, the majority of which propose an excess of organic material. Additionally, we demonstrate that the observed ligand peak is a sensitive probe of ligand shell ordering. Changes as a function of ligand length, geometry, and temperature can all be readily observed by X-ray diffraction and manipulated to achieve desired outcomes for the final colloidal system.
The degree of ligand ordering on colloidal inorganic nanocrystal surfaces has long been a topic of interest. Here, the authors show that a well-known powder X-ray diffraction feature observed in prior works, frequently assigned to excess ligands, corresponds to bound and ordered capping ligands.</description><subject>639/301/357/1017</subject><subject>639/638/298</subject><subject>Capping</subject><subject>Colloids</subject><subject>Crystals</subject><subject>Humanities and Social Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ligands</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Nanocrystals</subject><subject>Quantum dots</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1vFCEUhidGY5vaP-CFmeiNiRnlaxi4MTEbP5o06Y0m3hFgDls2u7AFZtv-e9lOXVsvjNxw4DznhQNv07zE6D1GVHzIDDM-dIjgjhDJhu7mSXNMEMMdHgh9-iA-ak5zXqE6qMSCsefNEaVy4Fjw42Z1YTKknS4-hja6NqYREox1XurgbWv1duvDsl37uh5zW6kMG29jGCdb9pmrSYcybdoxltzuvG638bpqtD-7pG_b0TuXtN3Lv2ieOb3OcHo_nzQ_vnz-vvjWnV98PVt8Ou8sp7R0QDHRpO_F0CPBhgGDAOmMdACSY-2EEcZwkBgxoL3TghNKJIdRuH5AwOhJczbrjlGv1Db5jU63Kmqv7jZqZ0qn4u0aFNcD0mjURnLEnJWGGCyM5ZY5hImBqvVx1tpOZgOjhVCSXj8SfZwJ_lIt404JjCkZeBV4PQvEXLzK1hewl_X1AtiisMAM932F3t6fkuLVBLmojc8W1msdIE5ZkZ7wSko8VPTNX-gqTinU99xTPSGcElQpMlM2xZwTuMONMVJ7-6jZPqraR93ZR93UolcPez2U_DZLBcQMXIOJrvYCwcIBq_7i9dMIlTXCeOHLnakWcQqllr77_9JK05nOlQhLSH-a_Mf9fwGZlfKR</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Calvin, Jason J.</creator><creator>Kaufman, Tierni M.</creator><creator>Sedlak, Adam B.</creator><creator>Crook, Michelle F.</creator><creator>Alivisatos, A. Paul</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8381-2466</orcidid><orcidid>https://orcid.org/0000-0002-3895-8682</orcidid><orcidid>https://orcid.org/0000-0003-3550-0868</orcidid><orcidid>https://orcid.org/0000000238958682</orcidid><orcidid>https://orcid.org/0000000183812466</orcidid></search><sort><creationdate>20210511</creationdate><title>Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction</title><author>Calvin, Jason J. ; Kaufman, Tierni M. ; Sedlak, Adam B. ; Crook, Michelle F. ; Alivisatos, A. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-e312a255875084771e8e9fb9fee961af8b8bb6e9104e35fa8623296ed8f570e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/357/1017</topic><topic>639/638/298</topic><topic>Capping</topic><topic>Colloids</topic><topic>Crystals</topic><topic>Humanities and Social Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ligands</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Nanocrystals</topic><topic>Quantum dots</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvin, Jason J.</creatorcontrib><creatorcontrib>Kaufman, Tierni M.</creatorcontrib><creatorcontrib>Sedlak, Adam B.</creatorcontrib><creatorcontrib>Crook, Michelle F.</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvin, Jason J.</au><au>Kaufman, Tierni M.</au><au>Sedlak, Adam B.</au><au>Crook, Michelle F.</au><au>Alivisatos, A. Paul</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2021-05-11</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>2663</spage><epage>2663</epage><pages>2663-2663</pages><artnum>2663</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Powder X-ray diffraction is one of the key techniques used to characterize the inorganic structure of colloidal nanocrystals. The comparatively low scattering factor of nuclei of the organic capping ligands and their propensity to be disordered has led investigators to typically consider them effectively invisible to this technique. In this report, we demonstrate that a commonly observed powder X-ray diffraction peak around
q
=
1.4
Å
−
1
observed in many small, colloidal quantum dots can be assigned to well-ordered aliphatic ligands bound to and capping the nanocrystals. This conclusion differs from a variety of explanations ascribed by previous sources, the majority of which propose an excess of organic material. Additionally, we demonstrate that the observed ligand peak is a sensitive probe of ligand shell ordering. Changes as a function of ligand length, geometry, and temperature can all be readily observed by X-ray diffraction and manipulated to achieve desired outcomes for the final colloidal system.
The degree of ligand ordering on colloidal inorganic nanocrystal surfaces has long been a topic of interest. Here, the authors show that a well-known powder X-ray diffraction feature observed in prior works, frequently assigned to excess ligands, corresponds to bound and ordered capping ligands.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33976186</pmid><doi>10.1038/s41467-021-22947-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8381-2466</orcidid><orcidid>https://orcid.org/0000-0002-3895-8682</orcidid><orcidid>https://orcid.org/0000-0003-3550-0868</orcidid><orcidid>https://orcid.org/0000000238958682</orcidid><orcidid>https://orcid.org/0000000183812466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-05, Vol.12 (1), p.2663-2663, Article 2663 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_webofscience_primary_000658723900011CitationCount |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | 639/301/357/1017 639/638/298 Capping Colloids Crystals Humanities and Social Sciences INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ligands MATERIALS SCIENCE multidisciplinary Multidisciplinary Sciences Nanocrystals Quantum dots Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) X ray powder diffraction X-ray diffraction |
title | Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20ordered%20organic%20capping%20ligands%20on%20semiconducting%20quantum%20dots%20via%20powder%20X-ray%20diffraction&rft.jtitle=Nature%20communications&rft.au=Calvin,%20Jason%20J.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-05-11&rft.volume=12&rft.issue=1&rft.spage=2663&rft.epage=2663&rft.pages=2663-2663&rft.artnum=2663&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-22947-x&rft_dat=%3Cproquest_webof%3E2525226320%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525226320&rft_id=info:pmid/33976186&rft_doaj_id=oai_doaj_org_article_6a70a0dab9604fc9b2b18bc6c4f012be&rfr_iscdi=true |