Field Scale Modelling of Explosion-Generated Crack Densities in Granitic Rocks Using Dual-Support Smoothed Particle Hydrodynamics (DS-SPH)

A dual-support smoothed particle hydrodynamics (DS-SPH) method is developed to quantify explosion-generated crack densities within granitic rock masses in field-scale computational domains. In DS-SPH framework, coupled Eulerian total Lagrangian formulations, along with interface treatment between so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2021-09, Vol.54 (9), p.4419-4454
Hauptverfasser: Gharehdash, Saba, Sainsbury, Bre-Anne Louise, Barzegar, Milad, Palymskiy, Igor B., Fomin, Pavel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4454
container_issue 9
container_start_page 4419
container_title Rock mechanics and rock engineering
container_volume 54
creator Gharehdash, Saba
Sainsbury, Bre-Anne Louise
Barzegar, Milad
Palymskiy, Igor B.
Fomin, Pavel A.
description A dual-support smoothed particle hydrodynamics (DS-SPH) method is developed to quantify explosion-generated crack densities within granitic rock masses in field-scale computational domains. In DS-SPH framework, coupled Eulerian total Lagrangian formulations, along with interface treatment between solid and inviscid fluid particles are fully considered. A new momentum equation formulation for interface treatment between inviscid fluids with various density ratios inside the blast borehole is also developed. The DS-SPH solutions are extended in such a way that decoupled explosions together with free surface and non-reflecting boundary conditions can be easily implemented. The three main deficiencies of conventional SPH (e.g., inconsistency, tensile instability, and hourglass mode) are removed in the stabilized DS-SPH method. In addition, GPU parallelization is adopted to accelerate the stabilized DS-SPH approach for higher efficiency. Then, the robustness of the developed DS-SPH solutions are verified by a number of theoretical and computational examples, and reproducing the full-scale blast field experiments. The developed DS-SPH solutions precisely reproduce the experimentally observed blast wave structures, and crack densities at several monitor locations. This is accomplished by addressing uncertainties in input parameters and enforcing various stabilization terms in DS-SPH formulations. Satisfactory speedup and acceptable scalability are also obtained, demonstrating that GPU-accelerated DS-SPH is a promising tool to speed up field scale particle-based simulations.
doi_str_mv 10.1007/s00603-021-02519-7
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000658151700003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565287385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-88d7d958fc44c3ae7ac0f29b50354a7b4bddaf40d84ef247d54727e2ae3b3be43</originalsourceid><addsrcrecordid>eNqNkd9uFCEUhydGE9fqC3hF4o3GUPm7zF6a2Xa3SY2NYxPvJgycqbSzMAUmuq_gU0sdo3fGCwKE7zsHflTVS0pOKSHqXSJkTTgmjJYh6QarR9WKCi6wkPzL42pFFOOYrTl7Wj1L6ZaQcqjqVfXj3MFoUWv0COhDsDCOzt-gMKCz79MYkgse78BD1BksaqI2d2gLPrnsICHn0S5qXzYGfQrmLqHr9KBvZz3idp6mEDNqDyHkr8W-0rGApc_-aGOwR68PziT0etvi9mr_5nn1ZNBjghe_55Pq-vzsc7PHlx93F837S2w43WRc11bZjawHI4ThGpQ2ZGCbXhIuhVa96K3VgyC2FjAwoawUiilgGnjPexD8pHq11J1iuJ8h5e42zNGXlh2Ta8lqxWtZKLZQJoaUIgzdFN1Bx2NHSfeQebdk3pXMu1-Zd6pIbxfpG_RhSMaBN_BHJEWQNZVUlRXhha7_n25c1rn8RhNmn4vKFzUV3N9A_PuGf1zvJ8Fupko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565287385</pqid></control><display><type>article</type><title>Field Scale Modelling of Explosion-Generated Crack Densities in Granitic Rocks Using Dual-Support Smoothed Particle Hydrodynamics (DS-SPH)</title><source>SpringerNature Journals</source><creator>Gharehdash, Saba ; Sainsbury, Bre-Anne Louise ; Barzegar, Milad ; Palymskiy, Igor B. ; Fomin, Pavel A.</creator><creatorcontrib>Gharehdash, Saba ; Sainsbury, Bre-Anne Louise ; Barzegar, Milad ; Palymskiy, Igor B. ; Fomin, Pavel A.</creatorcontrib><description>A dual-support smoothed particle hydrodynamics (DS-SPH) method is developed to quantify explosion-generated crack densities within granitic rock masses in field-scale computational domains. In DS-SPH framework, coupled Eulerian total Lagrangian formulations, along with interface treatment between solid and inviscid fluid particles are fully considered. A new momentum equation formulation for interface treatment between inviscid fluids with various density ratios inside the blast borehole is also developed. The DS-SPH solutions are extended in such a way that decoupled explosions together with free surface and non-reflecting boundary conditions can be easily implemented. The three main deficiencies of conventional SPH (e.g., inconsistency, tensile instability, and hourglass mode) are removed in the stabilized DS-SPH method. In addition, GPU parallelization is adopted to accelerate the stabilized DS-SPH approach for higher efficiency. Then, the robustness of the developed DS-SPH solutions are verified by a number of theoretical and computational examples, and reproducing the full-scale blast field experiments. The developed DS-SPH solutions precisely reproduce the experimentally observed blast wave structures, and crack densities at several monitor locations. This is accomplished by addressing uncertainties in input parameters and enforcing various stabilization terms in DS-SPH formulations. Satisfactory speedup and acceptable scalability are also obtained, demonstrating that GPU-accelerated DS-SPH is a promising tool to speed up field scale particle-based simulations.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02519-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Boreholes ; Boundary conditions ; Civil Engineering ; Computational fluid dynamics ; Computer applications ; Earth and Environmental Science ; Earth Sciences ; Engineering ; Engineering, Geological ; Explosions ; Field tests ; Fluid flow ; Fluid mechanics ; Fluids ; Free surfaces ; Geology ; Geophysics/Geodesy ; Geosciences, Multidisciplinary ; Hydrodynamics ; Momentum ; Momentum equation ; Nonreflecting boundaries ; Original Paper ; Parallel processing ; Physical Sciences ; Rocks ; Scale models ; Science &amp; Technology ; Smooth particle hydrodynamics ; Technology</subject><ispartof>Rock mechanics and rock engineering, 2021-09, Vol.54 (9), p.4419-4454</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000658151700003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-88d7d958fc44c3ae7ac0f29b50354a7b4bddaf40d84ef247d54727e2ae3b3be43</citedby><cites>FETCH-LOGICAL-c319t-88d7d958fc44c3ae7ac0f29b50354a7b4bddaf40d84ef247d54727e2ae3b3be43</cites><orcidid>0000-0003-4854-2282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02519-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02519-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Gharehdash, Saba</creatorcontrib><creatorcontrib>Sainsbury, Bre-Anne Louise</creatorcontrib><creatorcontrib>Barzegar, Milad</creatorcontrib><creatorcontrib>Palymskiy, Igor B.</creatorcontrib><creatorcontrib>Fomin, Pavel A.</creatorcontrib><title>Field Scale Modelling of Explosion-Generated Crack Densities in Granitic Rocks Using Dual-Support Smoothed Particle Hydrodynamics (DS-SPH)</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><addtitle>ROCK MECH ROCK ENG</addtitle><description>A dual-support smoothed particle hydrodynamics (DS-SPH) method is developed to quantify explosion-generated crack densities within granitic rock masses in field-scale computational domains. In DS-SPH framework, coupled Eulerian total Lagrangian formulations, along with interface treatment between solid and inviscid fluid particles are fully considered. A new momentum equation formulation for interface treatment between inviscid fluids with various density ratios inside the blast borehole is also developed. The DS-SPH solutions are extended in such a way that decoupled explosions together with free surface and non-reflecting boundary conditions can be easily implemented. The three main deficiencies of conventional SPH (e.g., inconsistency, tensile instability, and hourglass mode) are removed in the stabilized DS-SPH method. In addition, GPU parallelization is adopted to accelerate the stabilized DS-SPH approach for higher efficiency. Then, the robustness of the developed DS-SPH solutions are verified by a number of theoretical and computational examples, and reproducing the full-scale blast field experiments. The developed DS-SPH solutions precisely reproduce the experimentally observed blast wave structures, and crack densities at several monitor locations. This is accomplished by addressing uncertainties in input parameters and enforcing various stabilization terms in DS-SPH formulations. Satisfactory speedup and acceptable scalability are also obtained, demonstrating that GPU-accelerated DS-SPH is a promising tool to speed up field scale particle-based simulations.</description><subject>Boreholes</subject><subject>Boundary conditions</subject><subject>Civil Engineering</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Engineering, Geological</subject><subject>Explosions</subject><subject>Field tests</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Free surfaces</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geosciences, Multidisciplinary</subject><subject>Hydrodynamics</subject><subject>Momentum</subject><subject>Momentum equation</subject><subject>Nonreflecting boundaries</subject><subject>Original Paper</subject><subject>Parallel processing</subject><subject>Physical Sciences</subject><subject>Rocks</subject><subject>Scale models</subject><subject>Science &amp; Technology</subject><subject>Smooth particle hydrodynamics</subject><subject>Technology</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd9uFCEUhydGE9fqC3hF4o3GUPm7zF6a2Xa3SY2NYxPvJgycqbSzMAUmuq_gU0sdo3fGCwKE7zsHflTVS0pOKSHqXSJkTTgmjJYh6QarR9WKCi6wkPzL42pFFOOYrTl7Wj1L6ZaQcqjqVfXj3MFoUWv0COhDsDCOzt-gMKCz79MYkgse78BD1BksaqI2d2gLPrnsICHn0S5qXzYGfQrmLqHr9KBvZz3idp6mEDNqDyHkr8W-0rGApc_-aGOwR68PziT0etvi9mr_5nn1ZNBjghe_55Pq-vzsc7PHlx93F837S2w43WRc11bZjawHI4ThGpQ2ZGCbXhIuhVa96K3VgyC2FjAwoawUiilgGnjPexD8pHq11J1iuJ8h5e42zNGXlh2Ta8lqxWtZKLZQJoaUIgzdFN1Bx2NHSfeQebdk3pXMu1-Zd6pIbxfpG_RhSMaBN_BHJEWQNZVUlRXhha7_n25c1rn8RhNmn4vKFzUV3N9A_PuGf1zvJ8Fupko</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Gharehdash, Saba</creator><creator>Sainsbury, Bre-Anne Louise</creator><creator>Barzegar, Milad</creator><creator>Palymskiy, Igor B.</creator><creator>Fomin, Pavel A.</creator><general>Springer Vienna</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4854-2282</orcidid></search><sort><creationdate>20210901</creationdate><title>Field Scale Modelling of Explosion-Generated Crack Densities in Granitic Rocks Using Dual-Support Smoothed Particle Hydrodynamics (DS-SPH)</title><author>Gharehdash, Saba ; Sainsbury, Bre-Anne Louise ; Barzegar, Milad ; Palymskiy, Igor B. ; Fomin, Pavel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-88d7d958fc44c3ae7ac0f29b50354a7b4bddaf40d84ef247d54727e2ae3b3be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boreholes</topic><topic>Boundary conditions</topic><topic>Civil Engineering</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Engineering, Geological</topic><topic>Explosions</topic><topic>Field tests</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Free surfaces</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geosciences, Multidisciplinary</topic><topic>Hydrodynamics</topic><topic>Momentum</topic><topic>Momentum equation</topic><topic>Nonreflecting boundaries</topic><topic>Original Paper</topic><topic>Parallel processing</topic><topic>Physical Sciences</topic><topic>Rocks</topic><topic>Scale models</topic><topic>Science &amp; Technology</topic><topic>Smooth particle hydrodynamics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gharehdash, Saba</creatorcontrib><creatorcontrib>Sainsbury, Bre-Anne Louise</creatorcontrib><creatorcontrib>Barzegar, Milad</creatorcontrib><creatorcontrib>Palymskiy, Igor B.</creatorcontrib><creatorcontrib>Fomin, Pavel A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gharehdash, Saba</au><au>Sainsbury, Bre-Anne Louise</au><au>Barzegar, Milad</au><au>Palymskiy, Igor B.</au><au>Fomin, Pavel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field Scale Modelling of Explosion-Generated Crack Densities in Granitic Rocks Using Dual-Support Smoothed Particle Hydrodynamics (DS-SPH)</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><stitle>ROCK MECH ROCK ENG</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>54</volume><issue>9</issue><spage>4419</spage><epage>4454</epage><pages>4419-4454</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>A dual-support smoothed particle hydrodynamics (DS-SPH) method is developed to quantify explosion-generated crack densities within granitic rock masses in field-scale computational domains. In DS-SPH framework, coupled Eulerian total Lagrangian formulations, along with interface treatment between solid and inviscid fluid particles are fully considered. A new momentum equation formulation for interface treatment between inviscid fluids with various density ratios inside the blast borehole is also developed. The DS-SPH solutions are extended in such a way that decoupled explosions together with free surface and non-reflecting boundary conditions can be easily implemented. The three main deficiencies of conventional SPH (e.g., inconsistency, tensile instability, and hourglass mode) are removed in the stabilized DS-SPH method. In addition, GPU parallelization is adopted to accelerate the stabilized DS-SPH approach for higher efficiency. Then, the robustness of the developed DS-SPH solutions are verified by a number of theoretical and computational examples, and reproducing the full-scale blast field experiments. The developed DS-SPH solutions precisely reproduce the experimentally observed blast wave structures, and crack densities at several monitor locations. This is accomplished by addressing uncertainties in input parameters and enforcing various stabilization terms in DS-SPH formulations. Satisfactory speedup and acceptable scalability are also obtained, demonstrating that GPU-accelerated DS-SPH is a promising tool to speed up field scale particle-based simulations.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02519-7</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-4854-2282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2021-09, Vol.54 (9), p.4419-4454
issn 0723-2632
1434-453X
language eng
recordid cdi_webofscience_primary_000658151700003
source SpringerNature Journals
subjects Boreholes
Boundary conditions
Civil Engineering
Computational fluid dynamics
Computer applications
Earth and Environmental Science
Earth Sciences
Engineering
Engineering, Geological
Explosions
Field tests
Fluid flow
Fluid mechanics
Fluids
Free surfaces
Geology
Geophysics/Geodesy
Geosciences, Multidisciplinary
Hydrodynamics
Momentum
Momentum equation
Nonreflecting boundaries
Original Paper
Parallel processing
Physical Sciences
Rocks
Scale models
Science & Technology
Smooth particle hydrodynamics
Technology
title Field Scale Modelling of Explosion-Generated Crack Densities in Granitic Rocks Using Dual-Support Smoothed Particle Hydrodynamics (DS-SPH)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20Scale%20Modelling%20of%20Explosion-Generated%20Crack%20Densities%20in%20Granitic%20Rocks%20Using%20Dual-Support%20Smoothed%20Particle%20Hydrodynamics%20(DS-SPH)&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Gharehdash,%20Saba&rft.date=2021-09-01&rft.volume=54&rft.issue=9&rft.spage=4419&rft.epage=4454&rft.pages=4419-4454&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02519-7&rft_dat=%3Cproquest_webof%3E2565287385%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565287385&rft_id=info:pmid/&rfr_iscdi=true