Improved Glasius bio-inspired neural network for target search by multi-agents
This paper focuses on solving the multi-agent cooperative target search problem with the demand for obtaining the maximal cumulative detection reward, given the prior target probability map and the sensor detection ability under various constraints. First, a topologically organized model of Glasius...
Gespeichert in:
Veröffentlicht in: | Information sciences 2021-08, Vol.568, p.40-53 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | |
container_start_page | 40 |
container_title | Information sciences |
container_volume | 568 |
creator | Yao, Peng Zhao, Zhiyao |
description | This paper focuses on solving the multi-agent cooperative target search problem with the demand for obtaining the maximal cumulative detection reward, given the prior target probability map and the sensor detection ability under various constraints. First, a topologically organized model of Glasius bio-inspired neural network (GBNN) is constructed individually for each agent in order to represent the searching environment. The neural activities are determined not only by the activity propagation among neurons, but also by the external input containing the single detection reward and various constraints synthetically. Then, the agent’s searching motion can be selected greedily based on the dynamic activity landscape of GBNN. With the disadvantages of propagation time delay and activity attenuation, however, the relatively global mechanism in GBNN may lead to unsatisfactory performance or even fail to avoid the local optimal problem. Hence the Gaussian mixture model (GMM) is utilized to extract the high-value subregions and compute the future detection reward quantitatively, which can be introduced into the neuron’s external excitatory input of GBNN directly. The simulation results verify the high efficiency and strong robustness of GBNN-GMM in the searching scenarios. |
doi_str_mv | 10.1016/j.ins.2021.03.056 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ins_2021_03_056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025521003078</els_id><sourcerecordid>S0020025521003078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-209143084172ed7c5cb76e72747a62740c7c4356912ef6c72f25ee9a14a46eb03</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKs_wFv-QNaXbDbp4kmK1kLRi55DNvu2pm53S5JW-u9NqWcvb-DBN8wMIfccCg5cPWwKP8RCgOAFlAVU6oJM-EwLpkTNL8kEQAADUVXX5CbGDQBIrdSEvC23uzAesKWL3ka_j7TxI8teOx_yc8B9sH2W9DOGb9qNgSYb1phoRBvcF22OdLvvk2d2jUOKt-Sqs33Euz-dks-X54_5K1u9L5bzpxVzotaJCai5LGEmuRbYale5RivUQkttVb7gtJNlpWousFNOi05UiLXl0kqFDZRTws--LowxBuzMLvitDUfDwZwGMRuTS5jTIAZKkwfJzOOZwRzs4DGY6DwODttc1SXTjv4f-hdlYGjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Glasius bio-inspired neural network for target search by multi-agents</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yao, Peng ; Zhao, Zhiyao</creator><creatorcontrib>Yao, Peng ; Zhao, Zhiyao</creatorcontrib><description>This paper focuses on solving the multi-agent cooperative target search problem with the demand for obtaining the maximal cumulative detection reward, given the prior target probability map and the sensor detection ability under various constraints. First, a topologically organized model of Glasius bio-inspired neural network (GBNN) is constructed individually for each agent in order to represent the searching environment. The neural activities are determined not only by the activity propagation among neurons, but also by the external input containing the single detection reward and various constraints synthetically. Then, the agent’s searching motion can be selected greedily based on the dynamic activity landscape of GBNN. With the disadvantages of propagation time delay and activity attenuation, however, the relatively global mechanism in GBNN may lead to unsatisfactory performance or even fail to avoid the local optimal problem. Hence the Gaussian mixture model (GMM) is utilized to extract the high-value subregions and compute the future detection reward quantitatively, which can be introduced into the neuron’s external excitatory input of GBNN directly. The simulation results verify the high efficiency and strong robustness of GBNN-GMM in the searching scenarios.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2021.03.056</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cumulative detection reward ; Gaussian mixture model (GMM) ; Glasius bio-inspired neural network (GBNN) ; Multi-agent cooperative target search</subject><ispartof>Information sciences, 2021-08, Vol.568, p.40-53</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-209143084172ed7c5cb76e72747a62740c7c4356912ef6c72f25ee9a14a46eb03</citedby><cites>FETCH-LOGICAL-c297t-209143084172ed7c5cb76e72747a62740c7c4356912ef6c72f25ee9a14a46eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2021.03.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yao, Peng</creatorcontrib><creatorcontrib>Zhao, Zhiyao</creatorcontrib><title>Improved Glasius bio-inspired neural network for target search by multi-agents</title><title>Information sciences</title><description>This paper focuses on solving the multi-agent cooperative target search problem with the demand for obtaining the maximal cumulative detection reward, given the prior target probability map and the sensor detection ability under various constraints. First, a topologically organized model of Glasius bio-inspired neural network (GBNN) is constructed individually for each agent in order to represent the searching environment. The neural activities are determined not only by the activity propagation among neurons, but also by the external input containing the single detection reward and various constraints synthetically. Then, the agent’s searching motion can be selected greedily based on the dynamic activity landscape of GBNN. With the disadvantages of propagation time delay and activity attenuation, however, the relatively global mechanism in GBNN may lead to unsatisfactory performance or even fail to avoid the local optimal problem. Hence the Gaussian mixture model (GMM) is utilized to extract the high-value subregions and compute the future detection reward quantitatively, which can be introduced into the neuron’s external excitatory input of GBNN directly. The simulation results verify the high efficiency and strong robustness of GBNN-GMM in the searching scenarios.</description><subject>Cumulative detection reward</subject><subject>Gaussian mixture model (GMM)</subject><subject>Glasius bio-inspired neural network (GBNN)</subject><subject>Multi-agent cooperative target search</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKs_wFv-QNaXbDbp4kmK1kLRi55DNvu2pm53S5JW-u9NqWcvb-DBN8wMIfccCg5cPWwKP8RCgOAFlAVU6oJM-EwLpkTNL8kEQAADUVXX5CbGDQBIrdSEvC23uzAesKWL3ka_j7TxI8teOx_yc8B9sH2W9DOGb9qNgSYb1phoRBvcF22OdLvvk2d2jUOKt-Sqs33Euz-dks-X54_5K1u9L5bzpxVzotaJCai5LGEmuRbYale5RivUQkttVb7gtJNlpWousFNOi05UiLXl0kqFDZRTws--LowxBuzMLvitDUfDwZwGMRuTS5jTIAZKkwfJzOOZwRzs4DGY6DwODttc1SXTjv4f-hdlYGjo</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Yao, Peng</creator><creator>Zhao, Zhiyao</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202108</creationdate><title>Improved Glasius bio-inspired neural network for target search by multi-agents</title><author>Yao, Peng ; Zhao, Zhiyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-209143084172ed7c5cb76e72747a62740c7c4356912ef6c72f25ee9a14a46eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cumulative detection reward</topic><topic>Gaussian mixture model (GMM)</topic><topic>Glasius bio-inspired neural network (GBNN)</topic><topic>Multi-agent cooperative target search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Peng</creatorcontrib><creatorcontrib>Zhao, Zhiyao</creatorcontrib><collection>CrossRef</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Peng</au><au>Zhao, Zhiyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Glasius bio-inspired neural network for target search by multi-agents</atitle><jtitle>Information sciences</jtitle><date>2021-08</date><risdate>2021</risdate><volume>568</volume><spage>40</spage><epage>53</epage><pages>40-53</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper focuses on solving the multi-agent cooperative target search problem with the demand for obtaining the maximal cumulative detection reward, given the prior target probability map and the sensor detection ability under various constraints. First, a topologically organized model of Glasius bio-inspired neural network (GBNN) is constructed individually for each agent in order to represent the searching environment. The neural activities are determined not only by the activity propagation among neurons, but also by the external input containing the single detection reward and various constraints synthetically. Then, the agent’s searching motion can be selected greedily based on the dynamic activity landscape of GBNN. With the disadvantages of propagation time delay and activity attenuation, however, the relatively global mechanism in GBNN may lead to unsatisfactory performance or even fail to avoid the local optimal problem. Hence the Gaussian mixture model (GMM) is utilized to extract the high-value subregions and compute the future detection reward quantitatively, which can be introduced into the neuron’s external excitatory input of GBNN directly. The simulation results verify the high efficiency and strong robustness of GBNN-GMM in the searching scenarios.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2021.03.056</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2021-08, Vol.568, p.40-53 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ins_2021_03_056 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Cumulative detection reward Gaussian mixture model (GMM) Glasius bio-inspired neural network (GBNN) Multi-agent cooperative target search |
title | Improved Glasius bio-inspired neural network for target search by multi-agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Glasius%20bio-inspired%20neural%20network%20for%20target%20search%20by%20multi-agents&rft.jtitle=Information%20sciences&rft.au=Yao,%20Peng&rft.date=2021-08&rft.volume=568&rft.spage=40&rft.epage=53&rft.pages=40-53&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2021.03.056&rft_dat=%3Celsevier_cross%3ES0020025521003078%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0020025521003078&rfr_iscdi=true |