Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses

Silicon, in its nanoscale form, has shown plant-promoting and insecticidal properties. To date, however, we lack mechanistic evidence for how nanoscale silicon influences the regulation of plant chemical defenses against herbivore attacks. To address this gap, we compared the effect of Si nanodots (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-07, Vol.778, p.146378, Article 146378
Hauptverfasser: Wang, Zhenyu, Zhu, Wenqing, Chen, Feiran, Yue, Le, Ding, Ying, Xu, Hao, Rasmann, Sergio, Xiao, Zhenggao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon, in its nanoscale form, has shown plant-promoting and insecticidal properties. To date, however, we lack mechanistic evidence for how nanoscale silicon influences the regulation of plant chemical defenses against herbivore attacks. To address this gap, we compared the effect of Si nanodots (NDs) and sodium silicate, a conventional silicate fertilizer, on maize (Zea mays L.) chemical defenses against the oriental armyworm (Mythimna separata, Walker) caterpillars. We found that Si NDs and sodium silicate additions, at the dose of 50 mg/L, significantly inhibited the growth of caterpillars by 53.5% and 34.2%, respectively. This increased plant resistance was associated with a 44.2% increase in the production of chlorogenic acid, as well as the expression of PAL, C4H, 4CL, C3H and HCT, core genes involved in the biosynthesis of chlorogenic acid, by 1.7, 2.4, 1.9, 1.8 and 4.5 folds, respectively. Particularly, in the presence of M. separata, physiological changes in maize plants treated with 50 mg/L Si NDs, including changes in shoot biomass, leaf nutrients (e.g., K, P, Si), and chemical defense compounds (e.g., chlorogenic acid, total phenolics), were higher than those of plants added with equivalent concentrations of conventional silicate fertilizer. Taken together, our findings indicate that Si, in nanoscale form, could replace synthetic pesticides, and be implemented for a more effective and ecologically-sound management of insect pests in maize crop farming. [Display omitted] •50 mg/L Si nanodots and sodium silicate significantly inhibited the growth of maize armyworm.•Si nanodots have better foliar adhesion and bioavailability than conventional silicate fertilizer.•Si nanodots induced the upregulation of key genes involved in chlorogenic acid biosynthesis.•Nanosilicon is emerging as a promising new abiotic elicitor for plant production and chemical defenses.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.146378