3D Imaging Using Extreme Dispersion in Optical Metasurfaces

Metasurfaces have the potential to revolutionize imaging technologies due to their extreme control of phase, polarization, and amplitude of the incident light. They rely upon enhanced local interaction of light to achieve the desired phase profile. As a consequence of the enhanced local interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2021-05, Vol.8 (5), p.1421-1429
Hauptverfasser: Tan, Shiyu, Yang, Frank, Boominathan, Vivek, Veeraraghavan, Ashok, Naik, Gururaj V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metasurfaces have the potential to revolutionize imaging technologies due to their extreme control of phase, polarization, and amplitude of the incident light. They rely upon enhanced local interaction of light to achieve the desired phase profile. As a consequence of the enhanced local interaction of light, metasurfaces are highly dispersive. This strong dispersion has been recognized as a primary limitation as it relates to realizing conventional imaging with metasurfaces. Here, we argue that this strong dispersion is an added degree of design freedom for computational imaging, potentially opening up novel applications. In particular, we exploit this strongly dispersive property of metasurfaces to propose a compact, single-shot, and passive 3D imaging camera. Our device consists of a metalens engineered to focus different wavelengths at different depths and two deep networks to recover depth and RGB texture information from chromatic, defocused images acquired by the system. In contrast with other metasurface-based 3D sensors, our design can operate in the full visible range with a larger field-of-view (FOV) and can potentially generate dense depth maps of complicated 3D scenes. Our simulation results on a 1 mm diameter metalens demonstrate its ability to capture 3D depth and texture information ranging from 0.12 to 0.6 m.
ISSN:2330-4022
2330-4022
DOI:10.1021/acsphotonics.1c00110