An Indoor Localization System Using Residual Learning with Channel State Information

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2021-05, Vol.23 (5), p.574, Article 574
Hauptverfasser: Xu, Chendong, Wang, Weigang, Zhang, Yunwei, Qin, Jie, Yu, Shujuan, Zhang, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 574
container_title Entropy (Basel, Switzerland)
container_volume 23
creator Xu, Chendong
Wang, Weigang
Zhang, Yunwei
Qin, Jie
Yu, Shujuan
Zhang, Yun
description With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.
doi_str_mv 10.3390/e23050574
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000653916200001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_96e84726ac5d4bffbd2237125ba999de</doaj_id><sourcerecordid>2532344958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-cd44f62b33e5430555a32ad5f2a1a9c10740d8993723e95c6e0357124163bd5c3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRbK1e-A8GvFFkNd8zuRHKUHVhodCP65BJzuxmmUlqkrG0v97sblmsV17lcM6Th8N5q-o9Rl8olegrEIo44g17UZ1iJOWCUYRe_lWfVG9S2iJEKMHidXVCGRIN4uK0ujn39dLbEGK9CkaP7lFnF3x9_ZAyTPVtcn5dX0FydtZjvQId_a5z7_Km7jbaexjr66wzFMsQ4rT__bZ6Negxwbun96y6_X5x0_1crC5_LLvz1cIwJvLCWMYGQXpKgZctOeeaEm35QDTW0mDUMGRbKWlDKEhuBCDKG0wYFrS33NCzannw2qC36i66SccHFbRT-0aIa6VjdmYEJQW0rCFCG25ZPwy9JYQWF--1lNJCcX07uO7mfgJrwOeox2fS5xPvNmodfqsWcyw5KYKPT4IYfs2QsppcMjCO2kOYkyKcClaOznboh3_QbZijL6faUYQyJnlbqE8HysSQUoThuAxGape7OuZe2M8H9h76MCTjwBs48gghwanEgpQK4UK3_093Lu9D7cLsM_0D7PK9Ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532344958</pqid></control><display><type>article</type><title>An Indoor Localization System Using Residual Learning with Channel State Information</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Xu, Chendong ; Wang, Weigang ; Zhang, Yunwei ; Qin, Jie ; Yu, Shujuan ; Zhang, Yun</creator><creatorcontrib>Xu, Chendong ; Wang, Weigang ; Zhang, Yunwei ; Qin, Jie ; Yu, Shujuan ; Zhang, Yun</creatorcontrib><description>With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e23050574</identifier><identifier>PMID: 34067056</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Algorithms ; channel state information (CSI) ; Convolution ; Deep learning ; Degradation ; denoising neural network (NN) ; Indoor environments ; indoor localization ; Localization ; Location based services ; Methods ; Network interface cards ; Neural networks ; Noise ; Noise reduction ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Propagation ; residual network (ResNet) ; Science &amp; Technology ; Wireless networks</subject><ispartof>Entropy (Basel, Switzerland), 2021-05, Vol.23 (5), p.574, Article 574</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000653916200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c446t-cd44f62b33e5430555a32ad5f2a1a9c10740d8993723e95c6e0357124163bd5c3</citedby><cites>FETCH-LOGICAL-c446t-cd44f62b33e5430555a32ad5f2a1a9c10740d8993723e95c6e0357124163bd5c3</cites><orcidid>0000-0003-1412-3282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151952/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8151952/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Xu, Chendong</creatorcontrib><creatorcontrib>Wang, Weigang</creatorcontrib><creatorcontrib>Zhang, Yunwei</creatorcontrib><creatorcontrib>Qin, Jie</creatorcontrib><creatorcontrib>Yu, Shujuan</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><title>An Indoor Localization System Using Residual Learning with Channel State Information</title><title>Entropy (Basel, Switzerland)</title><addtitle>ENTROPY-SWITZ</addtitle><description>With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>channel state information (CSI)</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>denoising neural network (NN)</subject><subject>Indoor environments</subject><subject>indoor localization</subject><subject>Localization</subject><subject>Location based services</subject><subject>Methods</subject><subject>Network interface cards</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Propagation</subject><subject>residual network (ResNet)</subject><subject>Science &amp; Technology</subject><subject>Wireless networks</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkV1rFDEUhgdRbK1e-A8GvFFkNd8zuRHKUHVhodCP65BJzuxmmUlqkrG0v97sblmsV17lcM6Th8N5q-o9Rl8olegrEIo44g17UZ1iJOWCUYRe_lWfVG9S2iJEKMHidXVCGRIN4uK0ujn39dLbEGK9CkaP7lFnF3x9_ZAyTPVtcn5dX0FydtZjvQId_a5z7_Km7jbaexjr66wzFMsQ4rT__bZ6Negxwbun96y6_X5x0_1crC5_LLvz1cIwJvLCWMYGQXpKgZctOeeaEm35QDTW0mDUMGRbKWlDKEhuBCDKG0wYFrS33NCzannw2qC36i66SccHFbRT-0aIa6VjdmYEJQW0rCFCG25ZPwy9JYQWF--1lNJCcX07uO7mfgJrwOeox2fS5xPvNmodfqsWcyw5KYKPT4IYfs2QsppcMjCO2kOYkyKcClaOznboh3_QbZijL6faUYQyJnlbqE8HysSQUoThuAxGape7OuZe2M8H9h76MCTjwBs48gghwanEgpQK4UK3_093Lu9D7cLsM_0D7PK9Ug</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Xu, Chendong</creator><creator>Wang, Weigang</creator><creator>Zhang, Yunwei</creator><creator>Qin, Jie</creator><creator>Yu, Shujuan</creator><creator>Zhang, Yun</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1412-3282</orcidid></search><sort><creationdate>20210507</creationdate><title>An Indoor Localization System Using Residual Learning with Channel State Information</title><author>Xu, Chendong ; Wang, Weigang ; Zhang, Yunwei ; Qin, Jie ; Yu, Shujuan ; Zhang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-cd44f62b33e5430555a32ad5f2a1a9c10740d8993723e95c6e0357124163bd5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>channel state information (CSI)</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>denoising neural network (NN)</topic><topic>Indoor environments</topic><topic>indoor localization</topic><topic>Localization</topic><topic>Location based services</topic><topic>Methods</topic><topic>Network interface cards</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Propagation</topic><topic>residual network (ResNet)</topic><topic>Science &amp; Technology</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chendong</creatorcontrib><creatorcontrib>Wang, Weigang</creatorcontrib><creatorcontrib>Zhang, Yunwei</creatorcontrib><creatorcontrib>Qin, Jie</creatorcontrib><creatorcontrib>Yu, Shujuan</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chendong</au><au>Wang, Weigang</au><au>Zhang, Yunwei</au><au>Qin, Jie</au><au>Yu, Shujuan</au><au>Zhang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Indoor Localization System Using Residual Learning with Channel State Information</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><stitle>ENTROPY-SWITZ</stitle><date>2021-05-07</date><risdate>2021</risdate><volume>23</volume><issue>5</issue><spage>574</spage><pages>574-</pages><artnum>574</artnum><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34067056</pmid><doi>10.3390/e23050574</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1412-3282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2021-05, Vol.23 (5), p.574, Article 574
issn 1099-4300
1099-4300
language eng
recordid cdi_webofscience_primary_000653916200001
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Accuracy
Algorithms
channel state information (CSI)
Convolution
Deep learning
Degradation
denoising neural network (NN)
Indoor environments
indoor localization
Localization
Location based services
Methods
Network interface cards
Neural networks
Noise
Noise reduction
Physical Sciences
Physics
Physics, Multidisciplinary
Propagation
residual network (ResNet)
Science & Technology
Wireless networks
title An Indoor Localization System Using Residual Learning with Channel State Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T23%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Indoor%20Localization%20System%20Using%20Residual%20Learning%20with%20Channel%20State%20Information&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Xu,%20Chendong&rft.date=2021-05-07&rft.volume=23&rft.issue=5&rft.spage=574&rft.pages=574-&rft.artnum=574&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e23050574&rft_dat=%3Cproquest_webof%3E2532344958%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532344958&rft_id=info:pmid/34067056&rft_doaj_id=oai_doaj_org_article_96e84726ac5d4bffbd2237125ba999de&rfr_iscdi=true