Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations

The first accurate and complete theoretical room-temperature rotationally resolved spectra in the range 300-3000 cm(-1) are reported for the three most abundant isotopologues ((SF6)-S-32, (SF6)-S-33 and (SF6)-S-34) of the sulfur hexafluoride molecule. The literature reports that SF6 is widely used a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-01, Vol.23 (21), p.12115-12126
Hauptverfasser: Rey, Michael, Chizhmakova, Iana S., Nikitin, Andrei V., Tyuterev, Vladimir G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12126
container_issue 21
container_start_page 12115
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Rey, Michael
Chizhmakova, Iana S.
Nikitin, Andrei V.
Tyuterev, Vladimir G.
description The first accurate and complete theoretical room-temperature rotationally resolved spectra in the range 300-3000 cm(-1) are reported for the three most abundant isotopologues ((SF6)-S-32, (SF6)-S-33 and (SF6)-S-34) of the sulfur hexafluoride molecule. The literature reports that SF6 is widely used as a prototype molecule for studying the multi-photon excitation processes with powerful lasers in the infrared range. On the other hand, SF6 is an important greenhouse molecule with a very long lifetime in the atmosphere. Because of relatively low vibrational frequencies, the hot bands of this molecule contribute significantly to the absorption infrared spectra even at room temperature. This makes the calculation of complete rovibrational line lists required for fully converged opacity modeling extremely demanding. In order to reduce the computational costs, symmetry was exploited at all stages of the first global variational nuclear motion calculations by means of irreducible tensor operators. More than 2600 new vibrational band centers were predicted using our empirically refined ab initio potential energy surface. Highly excited rotational states were calculated up to J = 121, resulting in 6 billion transitions computed from an ab initio dipole moment surface and distributed over more than 500 cold and hot bands. The final line lists are made available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru). For the first time, the major (ro)vibrational band structures in the wavenumber range corresponding to the strongest absorption in the infra-red are completely elucidated for a seven-atom molecule, providing excellent agreement with the observed spectral patterns. It is shown that the obtained results are more complete than all available line lists, permitting reliable modelling of the temperature dependence of the molecular opacity.
doi_str_mv 10.1039/d0cp05727d
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000653779400001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535766676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-9bc66216ef9d16fe7b48e862b04891128d208fe6f89c9e49e098b477536b89403</originalsourceid><addsrcrecordid>eNqNkU1rFjEQx4NYbK1e_AQBL0JZm7fNy1EebBUKHqznh2x2QlOym21eLH4FP7VxKx48ecjMMPPjP8w_CL2h5D0l3FzOxG1kVEzNz9AZFZIPhmjx_G-t5Cl6Wco9IYSOlL9Ap1wQzhiXZ-jnbXq0eS7YYpeWLUIFDLG5MNsa0oqTx_UOcE7D9zDlvWcjnuw641Jzc7VlwGHdoa9Xspc-2wx9uoHrwIJ9Tj20GPFDs2tty7CAu7NrcF2oP9fiLlteoRNvY4HXf_I5-nb18fbwabj5cv358OFmcEySOpjJScmoBG9mKj2oSWjQkk1EaEMp0zMj2oP02jgDwgAxehJKjVxO2vTDz9G7J90tp4cGpR6XUBzEaFdIrRzZ2L0Rigne0bf_oPep5e7ATo1KSqlkpy6eqEeYki8uwOrguOWw2Pzj2F2XI1eqr_79AZ3W_08fQt3NOaS2Vv4L1dKWAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535766676</pqid></control><display><type>article</type><title>Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Rey, Michael ; Chizhmakova, Iana S. ; Nikitin, Andrei V. ; Tyuterev, Vladimir G.</creator><creatorcontrib>Rey, Michael ; Chizhmakova, Iana S. ; Nikitin, Andrei V. ; Tyuterev, Vladimir G.</creatorcontrib><description>The first accurate and complete theoretical room-temperature rotationally resolved spectra in the range 300-3000 cm(-1) are reported for the three most abundant isotopologues ((SF6)-S-32, (SF6)-S-33 and (SF6)-S-34) of the sulfur hexafluoride molecule. The literature reports that SF6 is widely used as a prototype molecule for studying the multi-photon excitation processes with powerful lasers in the infrared range. On the other hand, SF6 is an important greenhouse molecule with a very long lifetime in the atmosphere. Because of relatively low vibrational frequencies, the hot bands of this molecule contribute significantly to the absorption infrared spectra even at room temperature. This makes the calculation of complete rovibrational line lists required for fully converged opacity modeling extremely demanding. In order to reduce the computational costs, symmetry was exploited at all stages of the first global variational nuclear motion calculations by means of irreducible tensor operators. More than 2600 new vibrational band centers were predicted using our empirically refined ab initio potential energy surface. Highly excited rotational states were calculated up to J = 121, resulting in 6 billion transitions computed from an ab initio dipole moment surface and distributed over more than 500 cold and hot bands. The final line lists are made available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru). For the first time, the major (ro)vibrational band structures in the wavenumber range corresponding to the strongest absorption in the infra-red are completely elucidated for a seven-atom molecule, providing excellent agreement with the observed spectral patterns. It is shown that the obtained results are more complete than all available line lists, permitting reliable modelling of the temperature dependence of the molecular opacity.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp05727d</identifier><identifier>PMID: 34032236</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Absorption ; Atmospheric models ; Band theory ; Chemistry ; Chemistry, Physical ; Dipole moments ; Infrared lasers ; Infrared spectra ; Lists ; Mathematical analysis ; Opacity ; Physical Sciences ; Physics ; Physics, Atomic, Molecular &amp; Chemical ; Potential energy ; Room temperature ; Rotational states ; Science &amp; Technology ; Sulfur hexafluoride ; Surface chemistry ; Temperature dependence ; Tensors ; Wavelengths</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-01, Vol.23 (21), p.12115-12126</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000653779400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c260t-9bc66216ef9d16fe7b48e862b04891128d208fe6f89c9e49e098b477536b89403</citedby><cites>FETCH-LOGICAL-c260t-9bc66216ef9d16fe7b48e862b04891128d208fe6f89c9e49e098b477536b89403</cites><orcidid>0000-0002-4280-4096 ; 0000-0003-1644-7555 ; 0000-0002-2181-1158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Rey, Michael</creatorcontrib><creatorcontrib>Chizhmakova, Iana S.</creatorcontrib><creatorcontrib>Nikitin, Andrei V.</creatorcontrib><creatorcontrib>Tyuterev, Vladimir G.</creatorcontrib><title>Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>PHYS CHEM CHEM PHYS</addtitle><description>The first accurate and complete theoretical room-temperature rotationally resolved spectra in the range 300-3000 cm(-1) are reported for the three most abundant isotopologues ((SF6)-S-32, (SF6)-S-33 and (SF6)-S-34) of the sulfur hexafluoride molecule. The literature reports that SF6 is widely used as a prototype molecule for studying the multi-photon excitation processes with powerful lasers in the infrared range. On the other hand, SF6 is an important greenhouse molecule with a very long lifetime in the atmosphere. Because of relatively low vibrational frequencies, the hot bands of this molecule contribute significantly to the absorption infrared spectra even at room temperature. This makes the calculation of complete rovibrational line lists required for fully converged opacity modeling extremely demanding. In order to reduce the computational costs, symmetry was exploited at all stages of the first global variational nuclear motion calculations by means of irreducible tensor operators. More than 2600 new vibrational band centers were predicted using our empirically refined ab initio potential energy surface. Highly excited rotational states were calculated up to J = 121, resulting in 6 billion transitions computed from an ab initio dipole moment surface and distributed over more than 500 cold and hot bands. The final line lists are made available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru). For the first time, the major (ro)vibrational band structures in the wavenumber range corresponding to the strongest absorption in the infra-red are completely elucidated for a seven-atom molecule, providing excellent agreement with the observed spectral patterns. It is shown that the obtained results are more complete than all available line lists, permitting reliable modelling of the temperature dependence of the molecular opacity.</description><subject>Absorption</subject><subject>Atmospheric models</subject><subject>Band theory</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Dipole moments</subject><subject>Infrared lasers</subject><subject>Infrared spectra</subject><subject>Lists</subject><subject>Mathematical analysis</subject><subject>Opacity</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular &amp; Chemical</subject><subject>Potential energy</subject><subject>Room temperature</subject><subject>Rotational states</subject><subject>Science &amp; Technology</subject><subject>Sulfur hexafluoride</subject><subject>Surface chemistry</subject><subject>Temperature dependence</subject><subject>Tensors</subject><subject>Wavelengths</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1rFjEQx4NYbK1e_AQBL0JZm7fNy1EebBUKHqznh2x2QlOym21eLH4FP7VxKx48ecjMMPPjP8w_CL2h5D0l3FzOxG1kVEzNz9AZFZIPhmjx_G-t5Cl6Wco9IYSOlL9Ap1wQzhiXZ-jnbXq0eS7YYpeWLUIFDLG5MNsa0oqTx_UOcE7D9zDlvWcjnuw641Jzc7VlwGHdoa9Xspc-2wx9uoHrwIJ9Tj20GPFDs2tty7CAu7NrcF2oP9fiLlteoRNvY4HXf_I5-nb18fbwabj5cv358OFmcEySOpjJScmoBG9mKj2oSWjQkk1EaEMp0zMj2oP02jgDwgAxehJKjVxO2vTDz9G7J90tp4cGpR6XUBzEaFdIrRzZ2L0Rigne0bf_oPep5e7ATo1KSqlkpy6eqEeYki8uwOrguOWw2Pzj2F2XI1eqr_79AZ3W_08fQt3NOaS2Vv4L1dKWAg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Rey, Michael</creator><creator>Chizhmakova, Iana S.</creator><creator>Nikitin, Andrei V.</creator><creator>Tyuterev, Vladimir G.</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4280-4096</orcidid><orcidid>https://orcid.org/0000-0003-1644-7555</orcidid><orcidid>https://orcid.org/0000-0002-2181-1158</orcidid></search><sort><creationdate>20210101</creationdate><title>Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations</title><author>Rey, Michael ; Chizhmakova, Iana S. ; Nikitin, Andrei V. ; Tyuterev, Vladimir G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-9bc66216ef9d16fe7b48e862b04891128d208fe6f89c9e49e098b477536b89403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Atmospheric models</topic><topic>Band theory</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Dipole moments</topic><topic>Infrared lasers</topic><topic>Infrared spectra</topic><topic>Lists</topic><topic>Mathematical analysis</topic><topic>Opacity</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular &amp; Chemical</topic><topic>Potential energy</topic><topic>Room temperature</topic><topic>Rotational states</topic><topic>Science &amp; Technology</topic><topic>Sulfur hexafluoride</topic><topic>Surface chemistry</topic><topic>Temperature dependence</topic><topic>Tensors</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rey, Michael</creatorcontrib><creatorcontrib>Chizhmakova, Iana S.</creatorcontrib><creatorcontrib>Nikitin, Andrei V.</creatorcontrib><creatorcontrib>Tyuterev, Vladimir G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rey, Michael</au><au>Chizhmakova, Iana S.</au><au>Nikitin, Andrei V.</au><au>Tyuterev, Vladimir G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><stitle>PHYS CHEM CHEM PHYS</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>21</issue><spage>12115</spage><epage>12126</epage><pages>12115-12126</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The first accurate and complete theoretical room-temperature rotationally resolved spectra in the range 300-3000 cm(-1) are reported for the three most abundant isotopologues ((SF6)-S-32, (SF6)-S-33 and (SF6)-S-34) of the sulfur hexafluoride molecule. The literature reports that SF6 is widely used as a prototype molecule for studying the multi-photon excitation processes with powerful lasers in the infrared range. On the other hand, SF6 is an important greenhouse molecule with a very long lifetime in the atmosphere. Because of relatively low vibrational frequencies, the hot bands of this molecule contribute significantly to the absorption infrared spectra even at room temperature. This makes the calculation of complete rovibrational line lists required for fully converged opacity modeling extremely demanding. In order to reduce the computational costs, symmetry was exploited at all stages of the first global variational nuclear motion calculations by means of irreducible tensor operators. More than 2600 new vibrational band centers were predicted using our empirically refined ab initio potential energy surface. Highly excited rotational states were calculated up to J = 121, resulting in 6 billion transitions computed from an ab initio dipole moment surface and distributed over more than 500 cold and hot bands. The final line lists are made available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru). For the first time, the major (ro)vibrational band structures in the wavenumber range corresponding to the strongest absorption in the infra-red are completely elucidated for a seven-atom molecule, providing excellent agreement with the observed spectral patterns. It is shown that the obtained results are more complete than all available line lists, permitting reliable modelling of the temperature dependence of the molecular opacity.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34032236</pmid><doi>10.1039/d0cp05727d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4280-4096</orcidid><orcidid>https://orcid.org/0000-0003-1644-7555</orcidid><orcidid>https://orcid.org/0000-0002-2181-1158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-01, Vol.23 (21), p.12115-12126
issn 1463-9076
1463-9084
language eng
recordid cdi_webofscience_primary_000653779400001
source Royal Society Of Chemistry Journals 2008-; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Absorption
Atmospheric models
Band theory
Chemistry
Chemistry, Physical
Dipole moments
Infrared lasers
Infrared spectra
Lists
Mathematical analysis
Opacity
Physical Sciences
Physics
Physics, Atomic, Molecular & Chemical
Potential energy
Room temperature
Rotational states
Science & Technology
Sulfur hexafluoride
Surface chemistry
Temperature dependence
Tensors
Wavelengths
title Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20complete%20elucidation%20of%20the%20ro-vibrational%20band%20structure%20in%20the%20SF6%20infrared%20spectrum%20from%20full%20quantum-mechanical%20calculations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Rey,%20Michael&rft.date=2021-01-01&rft.volume=23&rft.issue=21&rft.spage=12115&rft.epage=12126&rft.pages=12115-12126&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp05727d&rft_dat=%3Cproquest_webof%3E2535766676%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535766676&rft_id=info:pmid/34032236&rfr_iscdi=true