High CO2 permeability in supported molten-salt membranes with highly dense and aligned pores produced by directional solidification
Composite molten salt-ceramic membranes are promising devices for high-temperature CO2 separation. Intensive material properties impact on separation performance as do membrane geometry (thickness) and microstructure (pore volume fraction, size, connectivity, and tortuosity factor). Although control...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2021-07, Vol.630, p.119057, Article 119057 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Composite molten salt-ceramic membranes are promising devices for high-temperature CO2 separation. Intensive material properties impact on separation performance as do membrane geometry (thickness) and microstructure (pore volume fraction, size, connectivity, and tortuosity factor). Although controlling pore size is considered somewhat routine, achieving pore alignment and connectivity is still challenging. Here we report the production of the first gas separation membrane using a porous ceramic matrix obtained from a directionally-solidified magnesium-stabilised zirconia (MgSZ) – MgO fibrilar eutectic as the membrane support. MgO was removed from the parent material by acid-etching to create a porous matrix with highly aligned pores with diameters of ~1 μm. X-ray nano-computed tomography of a central portion (~32,000 μm3) of the support identified ~21% porosity, with all pores aligned within 10° and ~76% percolating along the longest sampled length. Employing the matrix as a support for a carbonate molten salt, a high CO2 permeability of 1.41x10-10 mol m-1.s-1.Pa-1 at 815 °C was achieved, among the highest reported for supported molten-carbonate membranes (typically 10-12 to 10-10 mol m-1.s-1.Pa-1 at similar temperatures). We suggest that the high permeability is attributable to the excellent pore characteristics resulting from directional solidification, namely a dense array of parallel, micron-scale pores connecting the feed and permeate sides of the membrane.
[Display omitted]
•Membrane supports with highly aligned pores made from acid-etched eutectics.•CO2 permeability among the highest observed in supported molten-salt membranes.•High permeability attributed to the excellent pore alignment and high specific surface. |
---|---|
ISSN: | 0376-7388 1873-3123 |
DOI: | 10.1016/j.memsci.2021.119057 |