Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain

Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2021-05, Vol.12, Article 612732
Hauptverfasser: Labban, Abbrar, Palacio, Antonio S., Garcia, Francisca C., Hadaidi, Ghaida, Ansari, Mohd, Lopez-Urrutia, Angel, Alonso-Saez, Laura, Hong, Pei-Ying, Moran, Xose Anxelu G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Frontiers in microbiology
container_volume 12
creator Labban, Abbrar
Palacio, Antonio S.
Garcia, Francisca C.
Hadaidi, Ghaida
Ansari, Mohd
Lopez-Urrutia, Angel
Alonso-Saez, Laura
Hong, Pei-Ying
Moran, Xose Anxelu G.
description Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.
doi_str_mv 10.3389/fmicb.2021.612732
format Article
fullrecord <record><control><sourceid>pubmedcentral_webof</sourceid><recordid>TN_cdi_webofscience_primary_000652970900001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1f18c7538de5412d97c1f189d811feb1</doaj_id><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_8141594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEolXpD-DmO8oSfySOL0gQAa1UCYktgpvljMddV7txZHuL-u9xNqiiN3ywxzPzPprRW1VvabPhvFfv3cHDuGENo5uOMsnZi-qcdp2oecN-vfwnPqsuU7pvyhENK_fr6oyLEreqOa_MLR5mjCYfI5LvmOYwJUwkOHKFGWPIMcw7D-STgfL1hviJDKGG4_6k-OnzjpgitGSLhmwfJ4RdgABwTGSbo_HTm-qVM_uEl3_fi-rHl8-3w1V98-3r9fDxpgYhWK6llGCsaEZnhGw7J1rbW2il7Y0TPRVCOcsEZ6XFoUVwzKCRvFMKlBDC8IvqeuXaYO71HP3BxEcdjNenRIh32sTsYY-aOtqDbHlvsRWUWSVhSSnbU-pwpIX1YWXNx_GAFnAqq-yfQZ9XJr_Td-FBl0Fpq0QB0BUAMaQU0T1paaMX-_TJPr3Yp1f7iubdqvmNY3AJPE6AT7piXNcyJRu1OLmM2P9_9-CzyT5MQzhOmf8Bm26v4A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Labban, Abbrar ; Palacio, Antonio S. ; Garcia, Francisca C. ; Hadaidi, Ghaida ; Ansari, Mohd ; Lopez-Urrutia, Angel ; Alonso-Saez, Laura ; Hong, Pei-Ying ; Moran, Xose Anxelu G.</creator><creatorcontrib>Labban, Abbrar ; Palacio, Antonio S. ; Garcia, Francisca C. ; Hadaidi, Ghaida ; Ansari, Mohd ; Lopez-Urrutia, Angel ; Alonso-Saez, Laura ; Hong, Pei-Ying ; Moran, Xose Anxelu G.</creatorcontrib><description>Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2021.612732</identifier><identifier>PMID: 34040590</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>cell size ; growth rate ; heterotrophic bacteria ; Life Sciences &amp; Biomedicine ; metabolic ecology ; Microbiology ; Science &amp; Technology ; Synechococcus ; temperature</subject><ispartof>Frontiers in microbiology, 2021-05, Vol.12, Article 612732</ispartof><rights>Copyright © 2021 Labban, Palacio, García, Hadaidi, Ansari, López-Urrutia, Alonso-Sáez, Hong and Morán. 2021 Labban, Palacio, García, Hadaidi, Ansari, López-Urrutia, Alonso-Sáez, Hong and Morán</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652970900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</citedby><cites>FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</cites><orcidid>0000-0001-5363-1015 ; 0000-0003-1757-4767 ; 0000-0002-7415-6361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141594/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141594/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Labban, Abbrar</creatorcontrib><creatorcontrib>Palacio, Antonio S.</creatorcontrib><creatorcontrib>Garcia, Francisca C.</creatorcontrib><creatorcontrib>Hadaidi, Ghaida</creatorcontrib><creatorcontrib>Ansari, Mohd</creatorcontrib><creatorcontrib>Lopez-Urrutia, Angel</creatorcontrib><creatorcontrib>Alonso-Saez, Laura</creatorcontrib><creatorcontrib>Hong, Pei-Ying</creatorcontrib><creatorcontrib>Moran, Xose Anxelu G.</creatorcontrib><title>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</title><title>Frontiers in microbiology</title><addtitle>FRONT MICROBIOL</addtitle><description>Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.</description><subject>cell size</subject><subject>growth rate</subject><subject>heterotrophic bacteria</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>metabolic ecology</subject><subject>Microbiology</subject><subject>Science &amp; Technology</subject><subject>Synechococcus</subject><subject>temperature</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQhiMEolXpD-DmO8oSfySOL0gQAa1UCYktgpvljMddV7txZHuL-u9xNqiiN3ywxzPzPprRW1VvabPhvFfv3cHDuGENo5uOMsnZi-qcdp2oecN-vfwnPqsuU7pvyhENK_fr6oyLEreqOa_MLR5mjCYfI5LvmOYwJUwkOHKFGWPIMcw7D-STgfL1hviJDKGG4_6k-OnzjpgitGSLhmwfJ4RdgABwTGSbo_HTm-qVM_uEl3_fi-rHl8-3w1V98-3r9fDxpgYhWK6llGCsaEZnhGw7J1rbW2il7Y0TPRVCOcsEZ6XFoUVwzKCRvFMKlBDC8IvqeuXaYO71HP3BxEcdjNenRIh32sTsYY-aOtqDbHlvsRWUWSVhSSnbU-pwpIX1YWXNx_GAFnAqq-yfQZ9XJr_Td-FBl0Fpq0QB0BUAMaQU0T1paaMX-_TJPr3Yp1f7iubdqvmNY3AJPE6AT7piXNcyJRu1OLmM2P9_9-CzyT5MQzhOmf8Bm26v4A</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Labban, Abbrar</creator><creator>Palacio, Antonio S.</creator><creator>Garcia, Francisca C.</creator><creator>Hadaidi, Ghaida</creator><creator>Ansari, Mohd</creator><creator>Lopez-Urrutia, Angel</creator><creator>Alonso-Saez, Laura</creator><creator>Hong, Pei-Ying</creator><creator>Moran, Xose Anxelu G.</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5363-1015</orcidid><orcidid>https://orcid.org/0000-0003-1757-4767</orcidid><orcidid>https://orcid.org/0000-0002-7415-6361</orcidid></search><sort><creationdate>20210510</creationdate><title>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</title><author>Labban, Abbrar ; Palacio, Antonio S. ; Garcia, Francisca C. ; Hadaidi, Ghaida ; Ansari, Mohd ; Lopez-Urrutia, Angel ; Alonso-Saez, Laura ; Hong, Pei-Ying ; Moran, Xose Anxelu G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cell size</topic><topic>growth rate</topic><topic>heterotrophic bacteria</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>metabolic ecology</topic><topic>Microbiology</topic><topic>Science &amp; Technology</topic><topic>Synechococcus</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labban, Abbrar</creatorcontrib><creatorcontrib>Palacio, Antonio S.</creatorcontrib><creatorcontrib>Garcia, Francisca C.</creatorcontrib><creatorcontrib>Hadaidi, Ghaida</creatorcontrib><creatorcontrib>Ansari, Mohd</creatorcontrib><creatorcontrib>Lopez-Urrutia, Angel</creatorcontrib><creatorcontrib>Alonso-Saez, Laura</creatorcontrib><creatorcontrib>Hong, Pei-Ying</creatorcontrib><creatorcontrib>Moran, Xose Anxelu G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labban, Abbrar</au><au>Palacio, Antonio S.</au><au>Garcia, Francisca C.</au><au>Hadaidi, Ghaida</au><au>Ansari, Mohd</au><au>Lopez-Urrutia, Angel</au><au>Alonso-Saez, Laura</au><au>Hong, Pei-Ying</au><au>Moran, Xose Anxelu G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</atitle><jtitle>Frontiers in microbiology</jtitle><stitle>FRONT MICROBIOL</stitle><date>2021-05-10</date><risdate>2021</risdate><volume>12</volume><artnum>612732</artnum><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>34040590</pmid><doi>10.3389/fmicb.2021.612732</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5363-1015</orcidid><orcidid>https://orcid.org/0000-0003-1757-4767</orcidid><orcidid>https://orcid.org/0000-0002-7415-6361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-302X
ispartof Frontiers in microbiology, 2021-05, Vol.12, Article 612732
issn 1664-302X
1664-302X
language eng
recordid cdi_webofscience_primary_000652970900001CitationCount
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects cell size
growth rate
heterotrophic bacteria
Life Sciences & Biomedicine
metabolic ecology
Microbiology
Science & Technology
Synechococcus
temperature
title Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Responses%20of%20Heterotrophic%20Bacteria%20in%20Co-culture%20With%20a%20Red%20Sea%20Synechococcus%20Strain&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Labban,%20Abbrar&rft.date=2021-05-10&rft.volume=12&rft.artnum=612732&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2021.612732&rft_dat=%3Cpubmedcentral_webof%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_8141594%3C/pubmedcentral_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34040590&rft_doaj_id=oai_doaj_org_article_1f18c7538de5412d97c1f189d811feb1&rfr_iscdi=true