Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain
Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria...
Gespeichert in:
Veröffentlicht in: | Frontiers in microbiology 2021-05, Vol.12, Article 612732 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Frontiers in microbiology |
container_volume | 12 |
creator | Labban, Abbrar Palacio, Antonio S. Garcia, Francisca C. Hadaidi, Ghaida Ansari, Mohd Lopez-Urrutia, Angel Alonso-Saez, Laura Hong, Pei-Ying Moran, Xose Anxelu G. |
description | Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules. |
doi_str_mv | 10.3389/fmicb.2021.612732 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral_webof</sourceid><recordid>TN_cdi_webofscience_primary_000652970900001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1f18c7538de5412d97c1f189d811feb1</doaj_id><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_8141594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEolXpD-DmO8oSfySOL0gQAa1UCYktgpvljMddV7txZHuL-u9xNqiiN3ywxzPzPprRW1VvabPhvFfv3cHDuGENo5uOMsnZi-qcdp2oecN-vfwnPqsuU7pvyhENK_fr6oyLEreqOa_MLR5mjCYfI5LvmOYwJUwkOHKFGWPIMcw7D-STgfL1hviJDKGG4_6k-OnzjpgitGSLhmwfJ4RdgABwTGSbo_HTm-qVM_uEl3_fi-rHl8-3w1V98-3r9fDxpgYhWK6llGCsaEZnhGw7J1rbW2il7Y0TPRVCOcsEZ6XFoUVwzKCRvFMKlBDC8IvqeuXaYO71HP3BxEcdjNenRIh32sTsYY-aOtqDbHlvsRWUWSVhSSnbU-pwpIX1YWXNx_GAFnAqq-yfQZ9XJr_Td-FBl0Fpq0QB0BUAMaQU0T1paaMX-_TJPr3Yp1f7iubdqvmNY3AJPE6AT7piXNcyJRu1OLmM2P9_9-CzyT5MQzhOmf8Bm26v4A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Labban, Abbrar ; Palacio, Antonio S. ; Garcia, Francisca C. ; Hadaidi, Ghaida ; Ansari, Mohd ; Lopez-Urrutia, Angel ; Alonso-Saez, Laura ; Hong, Pei-Ying ; Moran, Xose Anxelu G.</creator><creatorcontrib>Labban, Abbrar ; Palacio, Antonio S. ; Garcia, Francisca C. ; Hadaidi, Ghaida ; Ansari, Mohd ; Lopez-Urrutia, Angel ; Alonso-Saez, Laura ; Hong, Pei-Ying ; Moran, Xose Anxelu G.</creatorcontrib><description>Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2021.612732</identifier><identifier>PMID: 34040590</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>cell size ; growth rate ; heterotrophic bacteria ; Life Sciences & Biomedicine ; metabolic ecology ; Microbiology ; Science & Technology ; Synechococcus ; temperature</subject><ispartof>Frontiers in microbiology, 2021-05, Vol.12, Article 612732</ispartof><rights>Copyright © 2021 Labban, Palacio, García, Hadaidi, Ansari, López-Urrutia, Alonso-Sáez, Hong and Morán. 2021 Labban, Palacio, García, Hadaidi, Ansari, López-Urrutia, Alonso-Sáez, Hong and Morán</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652970900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</citedby><cites>FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</cites><orcidid>0000-0001-5363-1015 ; 0000-0003-1757-4767 ; 0000-0002-7415-6361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141594/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141594/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Labban, Abbrar</creatorcontrib><creatorcontrib>Palacio, Antonio S.</creatorcontrib><creatorcontrib>Garcia, Francisca C.</creatorcontrib><creatorcontrib>Hadaidi, Ghaida</creatorcontrib><creatorcontrib>Ansari, Mohd</creatorcontrib><creatorcontrib>Lopez-Urrutia, Angel</creatorcontrib><creatorcontrib>Alonso-Saez, Laura</creatorcontrib><creatorcontrib>Hong, Pei-Ying</creatorcontrib><creatorcontrib>Moran, Xose Anxelu G.</creatorcontrib><title>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</title><title>Frontiers in microbiology</title><addtitle>FRONT MICROBIOL</addtitle><description>Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.</description><subject>cell size</subject><subject>growth rate</subject><subject>heterotrophic bacteria</subject><subject>Life Sciences & Biomedicine</subject><subject>metabolic ecology</subject><subject>Microbiology</subject><subject>Science & Technology</subject><subject>Synechococcus</subject><subject>temperature</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQhiMEolXpD-DmO8oSfySOL0gQAa1UCYktgpvljMddV7txZHuL-u9xNqiiN3ywxzPzPprRW1VvabPhvFfv3cHDuGENo5uOMsnZi-qcdp2oecN-vfwnPqsuU7pvyhENK_fr6oyLEreqOa_MLR5mjCYfI5LvmOYwJUwkOHKFGWPIMcw7D-STgfL1hviJDKGG4_6k-OnzjpgitGSLhmwfJ4RdgABwTGSbo_HTm-qVM_uEl3_fi-rHl8-3w1V98-3r9fDxpgYhWK6llGCsaEZnhGw7J1rbW2il7Y0TPRVCOcsEZ6XFoUVwzKCRvFMKlBDC8IvqeuXaYO71HP3BxEcdjNenRIh32sTsYY-aOtqDbHlvsRWUWSVhSSnbU-pwpIX1YWXNx_GAFnAqq-yfQZ9XJr_Td-FBl0Fpq0QB0BUAMaQU0T1paaMX-_TJPr3Yp1f7iubdqvmNY3AJPE6AT7piXNcyJRu1OLmM2P9_9-CzyT5MQzhOmf8Bm26v4A</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Labban, Abbrar</creator><creator>Palacio, Antonio S.</creator><creator>Garcia, Francisca C.</creator><creator>Hadaidi, Ghaida</creator><creator>Ansari, Mohd</creator><creator>Lopez-Urrutia, Angel</creator><creator>Alonso-Saez, Laura</creator><creator>Hong, Pei-Ying</creator><creator>Moran, Xose Anxelu G.</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5363-1015</orcidid><orcidid>https://orcid.org/0000-0003-1757-4767</orcidid><orcidid>https://orcid.org/0000-0002-7415-6361</orcidid></search><sort><creationdate>20210510</creationdate><title>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</title><author>Labban, Abbrar ; Palacio, Antonio S. ; Garcia, Francisca C. ; Hadaidi, Ghaida ; Ansari, Mohd ; Lopez-Urrutia, Angel ; Alonso-Saez, Laura ; Hong, Pei-Ying ; Moran, Xose Anxelu G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-777cad40bfa4756f45d8dc57d8af481449fd2432d40fedecf2aea73699c9444a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cell size</topic><topic>growth rate</topic><topic>heterotrophic bacteria</topic><topic>Life Sciences & Biomedicine</topic><topic>metabolic ecology</topic><topic>Microbiology</topic><topic>Science & Technology</topic><topic>Synechococcus</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labban, Abbrar</creatorcontrib><creatorcontrib>Palacio, Antonio S.</creatorcontrib><creatorcontrib>Garcia, Francisca C.</creatorcontrib><creatorcontrib>Hadaidi, Ghaida</creatorcontrib><creatorcontrib>Ansari, Mohd</creatorcontrib><creatorcontrib>Lopez-Urrutia, Angel</creatorcontrib><creatorcontrib>Alonso-Saez, Laura</creatorcontrib><creatorcontrib>Hong, Pei-Ying</creatorcontrib><creatorcontrib>Moran, Xose Anxelu G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labban, Abbrar</au><au>Palacio, Antonio S.</au><au>Garcia, Francisca C.</au><au>Hadaidi, Ghaida</au><au>Ansari, Mohd</au><au>Lopez-Urrutia, Angel</au><au>Alonso-Saez, Laura</au><au>Hong, Pei-Ying</au><au>Moran, Xose Anxelu G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain</atitle><jtitle>Frontiers in microbiology</jtitle><stitle>FRONT MICROBIOL</stitle><date>2021-05-10</date><risdate>2021</risdate><volume>12</volume><artnum>612732</artnum><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>Interactions between autotrophic and heterotrophic bacteria are fundamental for marine biogeochemical cycling. How global warming will affect the dynamics of these essential microbial players is not fully understood. The aims of this study were to identify the major groups of heterotrophic bacteria present in a Synechococcus culture originally isolated from the Red Sea and assess their joint responses to experimental warming within the metabolic ecology framework. A co-culture of Synechococcus sp. RS9907 and their associated heterotrophic bacteria, after determining their taxonomic affiliation by 16S rRNA gene sequencing, was acclimated and maintained in the lab at different temperatures (24-34 degrees C). The abundance and cellular properties of Synechococcus and the three dominant heterotrophic bacterial groups (pertaining to the genera Paracoccus, Marinobacter, and Muricauda) were monitored by flow cytometry. The activation energy of Synechococcus, which grew at 0.94-1.38 d(-1), was very similar (0.34 +/- 0.02 eV) to the value hypothesized by the metabolic theory of ecology (MTE) for autotrophs (0.32 eV), while the values of the three heterotrophic bacteria ranged from 0.16 to 1.15 eV and were negatively correlated with their corresponding specific growth rates (2.38-24.4 d(-1)). The corresponding carrying capacities did not always follow the inverse relationship with temperature predicted by MTE, nor did we observe a consistent response of bacterial cell size and temperature. Our results show that the responses to future ocean warming of autotrophic and heterotrophic bacteria in microbial consortia might not be well described by theoretical universal rules.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>34040590</pmid><doi>10.3389/fmicb.2021.612732</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5363-1015</orcidid><orcidid>https://orcid.org/0000-0003-1757-4767</orcidid><orcidid>https://orcid.org/0000-0002-7415-6361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-302X |
ispartof | Frontiers in microbiology, 2021-05, Vol.12, Article 612732 |
issn | 1664-302X 1664-302X |
language | eng |
recordid | cdi_webofscience_primary_000652970900001CitationCount |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | cell size growth rate heterotrophic bacteria Life Sciences & Biomedicine metabolic ecology Microbiology Science & Technology Synechococcus temperature |
title | Temperature Responses of Heterotrophic Bacteria in Co-culture With a Red Sea Synechococcus Strain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Responses%20of%20Heterotrophic%20Bacteria%20in%20Co-culture%20With%20a%20Red%20Sea%20Synechococcus%20Strain&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Labban,%20Abbrar&rft.date=2021-05-10&rft.volume=12&rft.artnum=612732&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2021.612732&rft_dat=%3Cpubmedcentral_webof%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_8141594%3C/pubmedcentral_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34040590&rft_doaj_id=oai_doaj_org_article_1f18c7538de5412d97c1f189d811feb1&rfr_iscdi=true |