An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island

Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polar biology 2021-07, Vol.44 (7), p.1343-1352
Hauptverfasser: García-Huidobro, M. Roberto, Poupin, María Josefina, Urrutia, Cristóbal, Rodriguez-Navarro, Alejandro B., Grenier, Christian, Vivanco, Juan F., Ramajo, Laura, Benjumeda, Isabel, Lagos, Nelson A., Lardies, Marco A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1352
container_issue 7
container_start_page 1343
container_title Polar biology
container_volume 44
creator García-Huidobro, M. Roberto
Poupin, María Josefina
Urrutia, Cristóbal
Rodriguez-Navarro, Alejandro B.
Grenier, Christian
Vivanco, Juan F.
Ramajo, Laura
Benjumeda, Isabel
Lagos, Nelson A.
Lardies, Marco A.
description Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica . The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.
doi_str_mv 10.1007/s00300-021-02882-9
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000652939100001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715536746</galeid><sourcerecordid>A715536746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</originalsourceid><addsrcrecordid>eNqNkcmOEzEQhlsIJMLAC3CyxAUEHcpLb8cogmFEJDjAueU18ahjN7YzaJ6KV6SSZrkhZFtW2f9XVfZfVc8prClA9zYDcIAaGMXV96weHlQrKjirGTTtw2oFHWO1gBYeV09yvgWgXSuGVfVjE4gPJck5zqdJFh-DnEguJ3NPoiMx7WXwmuh4nOMpmExkMET5eLT6cL5B8ZzibFPxNp-JcrAkH-w0_Q42ocikCyZR_k5Od5bsZLEpYDWCMj_jlSQvP68Jzo8-7N8Q2nP2ishyCcm1xS4suckT1n5aPXJyyvbZr_2q-vr-3Zfth3r36fpmu9nVmjd9qSVn4KTQzkhjnB6E0KqFlmrXgLJN5xSHzgzKsKGnTkjleKckaMkUU9QoflW9WPLi676dbC7jbTwl_Js8skaIYaCc9ahaL6q9nOzog4v4kxqHsUevY7DO4_mmo03D2060CLAF0CnmnKwb5-SPMt2PFMazk-Pi5IhOjhcnxwGhfoG-WxVd1t4Gbf-AANA2bOAD4mjr1peLi1u0qyD6-v9RVPNFnVER9jb9ffQ_2vsJWNzD6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544991328</pqid></control><display><type>article</type><title>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>García-Huidobro, M. Roberto ; Poupin, María Josefina ; Urrutia, Cristóbal ; Rodriguez-Navarro, Alejandro B. ; Grenier, Christian ; Vivanco, Juan F. ; Ramajo, Laura ; Benjumeda, Isabel ; Lagos, Nelson A. ; Lardies, Marco A.</creator><creatorcontrib>García-Huidobro, M. Roberto ; Poupin, María Josefina ; Urrutia, Cristóbal ; Rodriguez-Navarro, Alejandro B. ; Grenier, Christian ; Vivanco, Juan F. ; Ramajo, Laura ; Benjumeda, Isabel ; Lagos, Nelson A. ; Lardies, Marco A.</creatorcontrib><description>Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica . The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-021-02882-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acidification ; Analysis ; Arctic research ; Biodiversity &amp; Conservation ; Biomechanics ; Biomedical and Life Sciences ; Bivalvia ; Chemistry ; Climate change ; Ecology ; Environmental Sciences &amp; Ecology ; Iceberg scouring ; Laternula elliptica ; Life Sciences ; Life Sciences &amp; Biomedicine ; Mechanical properties ; Metabolic rate ; Metabolism ; Microbiology ; Microhardness ; Mollusks ; Oceanography ; Organic compounds ; Original Paper ; Physiological aspects ; Plant Sciences ; Predators ; Protein folding ; Regions ; Science &amp; Technology ; Sea-water ; Seawater ; Shellfish ; Shells ; Shells (structural forms) ; Structure-function relationships ; Water hardness ; Zoology</subject><ispartof>Polar biology, 2021-07, Vol.44 (7), p.1343-1352</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652939100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</citedby><cites>FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</cites><orcidid>0000-0003-3525-1830 ; 0000-0001-6707-685X ; 0000-0002-2659-368X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00300-021-02882-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00300-021-02882-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>García-Huidobro, M. Roberto</creatorcontrib><creatorcontrib>Poupin, María Josefina</creatorcontrib><creatorcontrib>Urrutia, Cristóbal</creatorcontrib><creatorcontrib>Rodriguez-Navarro, Alejandro B.</creatorcontrib><creatorcontrib>Grenier, Christian</creatorcontrib><creatorcontrib>Vivanco, Juan F.</creatorcontrib><creatorcontrib>Ramajo, Laura</creatorcontrib><creatorcontrib>Benjumeda, Isabel</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><title>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><addtitle>POLAR BIOL</addtitle><description>Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica . The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.</description><subject>Acidification</subject><subject>Analysis</subject><subject>Arctic research</subject><subject>Biodiversity &amp; Conservation</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Bivalvia</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>Ecology</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Iceberg scouring</subject><subject>Laternula elliptica</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mechanical properties</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Microhardness</subject><subject>Mollusks</subject><subject>Oceanography</subject><subject>Organic compounds</subject><subject>Original Paper</subject><subject>Physiological aspects</subject><subject>Plant Sciences</subject><subject>Predators</subject><subject>Protein folding</subject><subject>Regions</subject><subject>Science &amp; Technology</subject><subject>Sea-water</subject><subject>Seawater</subject><subject>Shellfish</subject><subject>Shells</subject><subject>Shells (structural forms)</subject><subject>Structure-function relationships</subject><subject>Water hardness</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcmOEzEQhlsIJMLAC3CyxAUEHcpLb8cogmFEJDjAueU18ahjN7YzaJ6KV6SSZrkhZFtW2f9XVfZfVc8prClA9zYDcIAaGMXV96weHlQrKjirGTTtw2oFHWO1gBYeV09yvgWgXSuGVfVjE4gPJck5zqdJFh-DnEguJ3NPoiMx7WXwmuh4nOMpmExkMET5eLT6cL5B8ZzibFPxNp-JcrAkH-w0_Q42ocikCyZR_k5Od5bsZLEpYDWCMj_jlSQvP68Jzo8-7N8Q2nP2ishyCcm1xS4suckT1n5aPXJyyvbZr_2q-vr-3Zfth3r36fpmu9nVmjd9qSVn4KTQzkhjnB6E0KqFlmrXgLJN5xSHzgzKsKGnTkjleKckaMkUU9QoflW9WPLi676dbC7jbTwl_Js8skaIYaCc9ahaL6q9nOzog4v4kxqHsUevY7DO4_mmo03D2060CLAF0CnmnKwb5-SPMt2PFMazk-Pi5IhOjhcnxwGhfoG-WxVd1t4Gbf-AANA2bOAD4mjr1peLi1u0qyD6-v9RVPNFnVER9jb9ffQ_2vsJWNzD6Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>García-Huidobro, M. Roberto</creator><creator>Poupin, María Josefina</creator><creator>Urrutia, Cristóbal</creator><creator>Rodriguez-Navarro, Alejandro B.</creator><creator>Grenier, Christian</creator><creator>Vivanco, Juan F.</creator><creator>Ramajo, Laura</creator><creator>Benjumeda, Isabel</creator><creator>Lagos, Nelson A.</creator><creator>Lardies, Marco A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3525-1830</orcidid><orcidid>https://orcid.org/0000-0001-6707-685X</orcidid><orcidid>https://orcid.org/0000-0002-2659-368X</orcidid></search><sort><creationdate>20210701</creationdate><title>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</title><author>García-Huidobro, M. Roberto ; Poupin, María Josefina ; Urrutia, Cristóbal ; Rodriguez-Navarro, Alejandro B. ; Grenier, Christian ; Vivanco, Juan F. ; Ramajo, Laura ; Benjumeda, Isabel ; Lagos, Nelson A. ; Lardies, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acidification</topic><topic>Analysis</topic><topic>Arctic research</topic><topic>Biodiversity &amp; Conservation</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Bivalvia</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>Ecology</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Iceberg scouring</topic><topic>Laternula elliptica</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mechanical properties</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Microhardness</topic><topic>Mollusks</topic><topic>Oceanography</topic><topic>Organic compounds</topic><topic>Original Paper</topic><topic>Physiological aspects</topic><topic>Plant Sciences</topic><topic>Predators</topic><topic>Protein folding</topic><topic>Regions</topic><topic>Science &amp; Technology</topic><topic>Sea-water</topic><topic>Seawater</topic><topic>Shellfish</topic><topic>Shells</topic><topic>Shells (structural forms)</topic><topic>Structure-function relationships</topic><topic>Water hardness</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Huidobro, M. Roberto</creatorcontrib><creatorcontrib>Poupin, María Josefina</creatorcontrib><creatorcontrib>Urrutia, Cristóbal</creatorcontrib><creatorcontrib>Rodriguez-Navarro, Alejandro B.</creatorcontrib><creatorcontrib>Grenier, Christian</creatorcontrib><creatorcontrib>Vivanco, Juan F.</creatorcontrib><creatorcontrib>Ramajo, Laura</creatorcontrib><creatorcontrib>Benjumeda, Isabel</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Huidobro, M. Roberto</au><au>Poupin, María Josefina</au><au>Urrutia, Cristóbal</au><au>Rodriguez-Navarro, Alejandro B.</au><au>Grenier, Christian</au><au>Vivanco, Juan F.</au><au>Ramajo, Laura</au><au>Benjumeda, Isabel</au><au>Lagos, Nelson A.</au><au>Lardies, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><stitle>POLAR BIOL</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>44</volume><issue>7</issue><spage>1343</spage><epage>1352</epage><pages>1343-1352</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><abstract>Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica . The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00300-021-02882-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3525-1830</orcidid><orcidid>https://orcid.org/0000-0001-6707-685X</orcidid><orcidid>https://orcid.org/0000-0002-2659-368X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0722-4060
ispartof Polar biology, 2021-07, Vol.44 (7), p.1343-1352
issn 0722-4060
1432-2056
language eng
recordid cdi_webofscience_primary_000652939100001CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Acidification
Analysis
Arctic research
Biodiversity & Conservation
Biomechanics
Biomedical and Life Sciences
Bivalvia
Chemistry
Climate change
Ecology
Environmental Sciences & Ecology
Iceberg scouring
Laternula elliptica
Life Sciences
Life Sciences & Biomedicine
Mechanical properties
Metabolic rate
Metabolism
Microbiology
Microhardness
Mollusks
Oceanography
Organic compounds
Original Paper
Physiological aspects
Plant Sciences
Predators
Protein folding
Regions
Science & Technology
Sea-water
Seawater
Shellfish
Shells
Shells (structural forms)
Structure-function relationships
Water hardness
Zoology
title An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intrapopulational%20study%20of%20organic%20compounds%20and%20biomechanical%20properties%20of%20the%20shell%20of%20the%20Antarctic%20bivalve%20Laternula%20elliptica%20(P.%20P.%20King,%201832)%20at%20King%20George%20Island&rft.jtitle=Polar%20biology&rft.au=Garc%C3%ADa-Huidobro,%20M.%20Roberto&rft.date=2021-07-01&rft.volume=44&rft.issue=7&rft.spage=1343&rft.epage=1352&rft.pages=1343-1352&rft.issn=0722-4060&rft.eissn=1432-2056&rft_id=info:doi/10.1007/s00300-021-02882-9&rft_dat=%3Cgale_webof%3EA715536746%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544991328&rft_id=info:pmid/&rft_galeid=A715536746&rfr_iscdi=true