An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island
Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanic...
Gespeichert in:
Veröffentlicht in: | Polar biology 2021-07, Vol.44 (7), p.1343-1352 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1352 |
---|---|
container_issue | 7 |
container_start_page | 1343 |
container_title | Polar biology |
container_volume | 44 |
creator | García-Huidobro, M. Roberto Poupin, María Josefina Urrutia, Cristóbal Rodriguez-Navarro, Alejandro B. Grenier, Christian Vivanco, Juan F. Ramajo, Laura Benjumeda, Isabel Lagos, Nelson A. Lardies, Marco A. |
description | Laternula elliptica
is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of
L. elliptica
shells. Further, we analyze different morphological traits and their association with the metabolism of a population of
L. elliptica
from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of
L. elliptica
. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the
L. elliptica
shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean. |
doi_str_mv | 10.1007/s00300-021-02882-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000652939100001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715536746</galeid><sourcerecordid>A715536746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</originalsourceid><addsrcrecordid>eNqNkcmOEzEQhlsIJMLAC3CyxAUEHcpLb8cogmFEJDjAueU18ahjN7YzaJ6KV6SSZrkhZFtW2f9XVfZfVc8prClA9zYDcIAaGMXV96weHlQrKjirGTTtw2oFHWO1gBYeV09yvgWgXSuGVfVjE4gPJck5zqdJFh-DnEguJ3NPoiMx7WXwmuh4nOMpmExkMET5eLT6cL5B8ZzibFPxNp-JcrAkH-w0_Q42ocikCyZR_k5Od5bsZLEpYDWCMj_jlSQvP68Jzo8-7N8Q2nP2ishyCcm1xS4suckT1n5aPXJyyvbZr_2q-vr-3Zfth3r36fpmu9nVmjd9qSVn4KTQzkhjnB6E0KqFlmrXgLJN5xSHzgzKsKGnTkjleKckaMkUU9QoflW9WPLi676dbC7jbTwl_Js8skaIYaCc9ahaL6q9nOzog4v4kxqHsUevY7DO4_mmo03D2060CLAF0CnmnKwb5-SPMt2PFMazk-Pi5IhOjhcnxwGhfoG-WxVd1t4Gbf-AANA2bOAD4mjr1peLi1u0qyD6-v9RVPNFnVER9jb9ffQ_2vsJWNzD6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544991328</pqid></control><display><type>article</type><title>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>García-Huidobro, M. Roberto ; Poupin, María Josefina ; Urrutia, Cristóbal ; Rodriguez-Navarro, Alejandro B. ; Grenier, Christian ; Vivanco, Juan F. ; Ramajo, Laura ; Benjumeda, Isabel ; Lagos, Nelson A. ; Lardies, Marco A.</creator><creatorcontrib>García-Huidobro, M. Roberto ; Poupin, María Josefina ; Urrutia, Cristóbal ; Rodriguez-Navarro, Alejandro B. ; Grenier, Christian ; Vivanco, Juan F. ; Ramajo, Laura ; Benjumeda, Isabel ; Lagos, Nelson A. ; Lardies, Marco A.</creatorcontrib><description>Laternula elliptica
is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of
L. elliptica
shells. Further, we analyze different morphological traits and their association with the metabolism of a population of
L. elliptica
from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of
L. elliptica
. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the
L. elliptica
shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-021-02882-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acidification ; Analysis ; Arctic research ; Biodiversity & Conservation ; Biomechanics ; Biomedical and Life Sciences ; Bivalvia ; Chemistry ; Climate change ; Ecology ; Environmental Sciences & Ecology ; Iceberg scouring ; Laternula elliptica ; Life Sciences ; Life Sciences & Biomedicine ; Mechanical properties ; Metabolic rate ; Metabolism ; Microbiology ; Microhardness ; Mollusks ; Oceanography ; Organic compounds ; Original Paper ; Physiological aspects ; Plant Sciences ; Predators ; Protein folding ; Regions ; Science & Technology ; Sea-water ; Seawater ; Shellfish ; Shells ; Shells (structural forms) ; Structure-function relationships ; Water hardness ; Zoology</subject><ispartof>Polar biology, 2021-07, Vol.44 (7), p.1343-1352</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652939100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</citedby><cites>FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</cites><orcidid>0000-0003-3525-1830 ; 0000-0001-6707-685X ; 0000-0002-2659-368X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00300-021-02882-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00300-021-02882-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>García-Huidobro, M. Roberto</creatorcontrib><creatorcontrib>Poupin, María Josefina</creatorcontrib><creatorcontrib>Urrutia, Cristóbal</creatorcontrib><creatorcontrib>Rodriguez-Navarro, Alejandro B.</creatorcontrib><creatorcontrib>Grenier, Christian</creatorcontrib><creatorcontrib>Vivanco, Juan F.</creatorcontrib><creatorcontrib>Ramajo, Laura</creatorcontrib><creatorcontrib>Benjumeda, Isabel</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><title>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><addtitle>POLAR BIOL</addtitle><description>Laternula elliptica
is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of
L. elliptica
shells. Further, we analyze different morphological traits and their association with the metabolism of a population of
L. elliptica
from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of
L. elliptica
. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the
L. elliptica
shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.</description><subject>Acidification</subject><subject>Analysis</subject><subject>Arctic research</subject><subject>Biodiversity & Conservation</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Bivalvia</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>Ecology</subject><subject>Environmental Sciences & Ecology</subject><subject>Iceberg scouring</subject><subject>Laternula elliptica</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Mechanical properties</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Microhardness</subject><subject>Mollusks</subject><subject>Oceanography</subject><subject>Organic compounds</subject><subject>Original Paper</subject><subject>Physiological aspects</subject><subject>Plant Sciences</subject><subject>Predators</subject><subject>Protein folding</subject><subject>Regions</subject><subject>Science & Technology</subject><subject>Sea-water</subject><subject>Seawater</subject><subject>Shellfish</subject><subject>Shells</subject><subject>Shells (structural forms)</subject><subject>Structure-function relationships</subject><subject>Water hardness</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcmOEzEQhlsIJMLAC3CyxAUEHcpLb8cogmFEJDjAueU18ahjN7YzaJ6KV6SSZrkhZFtW2f9XVfZfVc8prClA9zYDcIAaGMXV96weHlQrKjirGTTtw2oFHWO1gBYeV09yvgWgXSuGVfVjE4gPJck5zqdJFh-DnEguJ3NPoiMx7WXwmuh4nOMpmExkMET5eLT6cL5B8ZzibFPxNp-JcrAkH-w0_Q42ocikCyZR_k5Od5bsZLEpYDWCMj_jlSQvP68Jzo8-7N8Q2nP2ishyCcm1xS4suckT1n5aPXJyyvbZr_2q-vr-3Zfth3r36fpmu9nVmjd9qSVn4KTQzkhjnB6E0KqFlmrXgLJN5xSHzgzKsKGnTkjleKckaMkUU9QoflW9WPLi676dbC7jbTwl_Js8skaIYaCc9ahaL6q9nOzog4v4kxqHsUevY7DO4_mmo03D2060CLAF0CnmnKwb5-SPMt2PFMazk-Pi5IhOjhcnxwGhfoG-WxVd1t4Gbf-AANA2bOAD4mjr1peLi1u0qyD6-v9RVPNFnVER9jb9ffQ_2vsJWNzD6Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>García-Huidobro, M. Roberto</creator><creator>Poupin, María Josefina</creator><creator>Urrutia, Cristóbal</creator><creator>Rodriguez-Navarro, Alejandro B.</creator><creator>Grenier, Christian</creator><creator>Vivanco, Juan F.</creator><creator>Ramajo, Laura</creator><creator>Benjumeda, Isabel</creator><creator>Lagos, Nelson A.</creator><creator>Lardies, Marco A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3525-1830</orcidid><orcidid>https://orcid.org/0000-0001-6707-685X</orcidid><orcidid>https://orcid.org/0000-0002-2659-368X</orcidid></search><sort><creationdate>20210701</creationdate><title>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</title><author>García-Huidobro, M. Roberto ; Poupin, María Josefina ; Urrutia, Cristóbal ; Rodriguez-Navarro, Alejandro B. ; Grenier, Christian ; Vivanco, Juan F. ; Ramajo, Laura ; Benjumeda, Isabel ; Lagos, Nelson A. ; Lardies, Marco A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a320fa4cfdaddfc944cb6061cf50be57fb307d9bd2981f4abf37ba0ca2b2b1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acidification</topic><topic>Analysis</topic><topic>Arctic research</topic><topic>Biodiversity & Conservation</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Bivalvia</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>Ecology</topic><topic>Environmental Sciences & Ecology</topic><topic>Iceberg scouring</topic><topic>Laternula elliptica</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Mechanical properties</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Microhardness</topic><topic>Mollusks</topic><topic>Oceanography</topic><topic>Organic compounds</topic><topic>Original Paper</topic><topic>Physiological aspects</topic><topic>Plant Sciences</topic><topic>Predators</topic><topic>Protein folding</topic><topic>Regions</topic><topic>Science & Technology</topic><topic>Sea-water</topic><topic>Seawater</topic><topic>Shellfish</topic><topic>Shells</topic><topic>Shells (structural forms)</topic><topic>Structure-function relationships</topic><topic>Water hardness</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Huidobro, M. Roberto</creatorcontrib><creatorcontrib>Poupin, María Josefina</creatorcontrib><creatorcontrib>Urrutia, Cristóbal</creatorcontrib><creatorcontrib>Rodriguez-Navarro, Alejandro B.</creatorcontrib><creatorcontrib>Grenier, Christian</creatorcontrib><creatorcontrib>Vivanco, Juan F.</creatorcontrib><creatorcontrib>Ramajo, Laura</creatorcontrib><creatorcontrib>Benjumeda, Isabel</creatorcontrib><creatorcontrib>Lagos, Nelson A.</creatorcontrib><creatorcontrib>Lardies, Marco A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Huidobro, M. Roberto</au><au>Poupin, María Josefina</au><au>Urrutia, Cristóbal</au><au>Rodriguez-Navarro, Alejandro B.</au><au>Grenier, Christian</au><au>Vivanco, Juan F.</au><au>Ramajo, Laura</au><au>Benjumeda, Isabel</au><au>Lagos, Nelson A.</au><au>Lardies, Marco A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><stitle>POLAR BIOL</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>44</volume><issue>7</issue><spage>1343</spage><epage>1352</epage><pages>1343-1352</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><abstract>Laternula elliptica
is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of
L. elliptica
shells. Further, we analyze different morphological traits and their association with the metabolism of a population of
L. elliptica
from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam’s population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of
L. elliptica
. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the
L. elliptica
shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00300-021-02882-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3525-1830</orcidid><orcidid>https://orcid.org/0000-0001-6707-685X</orcidid><orcidid>https://orcid.org/0000-0002-2659-368X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0722-4060 |
ispartof | Polar biology, 2021-07, Vol.44 (7), p.1343-1352 |
issn | 0722-4060 1432-2056 |
language | eng |
recordid | cdi_webofscience_primary_000652939100001CitationCount |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Acidification Analysis Arctic research Biodiversity & Conservation Biomechanics Biomedical and Life Sciences Bivalvia Chemistry Climate change Ecology Environmental Sciences & Ecology Iceberg scouring Laternula elliptica Life Sciences Life Sciences & Biomedicine Mechanical properties Metabolic rate Metabolism Microbiology Microhardness Mollusks Oceanography Organic compounds Original Paper Physiological aspects Plant Sciences Predators Protein folding Regions Science & Technology Sea-water Seawater Shellfish Shells Shells (structural forms) Structure-function relationships Water hardness Zoology |
title | An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intrapopulational%20study%20of%20organic%20compounds%20and%20biomechanical%20properties%20of%20the%20shell%20of%20the%20Antarctic%20bivalve%20Laternula%20elliptica%20(P.%20P.%20King,%201832)%20at%20King%20George%20Island&rft.jtitle=Polar%20biology&rft.au=Garc%C3%ADa-Huidobro,%20M.%20Roberto&rft.date=2021-07-01&rft.volume=44&rft.issue=7&rft.spage=1343&rft.epage=1352&rft.pages=1343-1352&rft.issn=0722-4060&rft.eissn=1432-2056&rft_id=info:doi/10.1007/s00300-021-02882-9&rft_dat=%3Cgale_webof%3EA715536746%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544991328&rft_id=info:pmid/&rft_galeid=A715536746&rfr_iscdi=true |