First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM
We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-dam...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-06, Vol.68 (6), p.2680-2685 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2685 |
---|---|
container_issue | 6 |
container_start_page | 2680 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Nishioka, K. Miura, S. Honjo, H. Inoue, H. Watanabe, T. Nasuno, T. Naganuma, H. Nguyen, T. V. A. Noguchi, Y. Yasuhira, M. Ikeda, S. Endoh, T. |
description | We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor ( \Delta ), which results in over ten years retention; 2) superiority of large \Delta in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to 2\times nm node. |
doi_str_mv | 10.1109/TED.2021.3074103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000652799800013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422110</ieee_id><sourcerecordid>2530113444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhlcIJELLHYmLJY7IqT9318cobWlRokJZhDitbO9s6yqxg-2l4l_wk-s0FVx78oz1vB7rmap6R8mcUqJOurPTOSOMzjlpBCX8RTWjUjZY1aJ-Wc0IoS1WvOWvqzcp3ZW2FoLNqr_nLqaMTmEbfMpRZxc8CiNiEvst-jrpAV36DHHUFtAOr7vPhf3tSvPD5Vu0CvfoGpJLWXsLeBFBoy8xDJPNaH1zhbQfUAce_QQdUyEz-McJY4jowt3clquN02YD6FvX4fX1Yn1cvRr1JsHbp_Oo-n5-1i0v8Orq0-VyscKWKZoxb6hqlTS0odbURqlhsEq2g5SWWkIUrwdabCjatExAbWRjjLFNO1hZ25FzflR9OLy7i-HXBCn3d2GKvozsmeSEUi6EKBQ5UDaGlCKM_S66rY5_ekr6vfe-eO_33vsn7yXy8RC5BxPGZB0UM_9ihJBaskaptlR0T7fPp5cuPy5oGSafS_T9IeoA_keUYKx8jD8AEuedCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530113444</pqid></control><display><type>article</type><title>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</title><source>IEEE Electronic Library (IEL)</source><creator>Nishioka, K. ; Miura, S. ; Honjo, H. ; Inoue, H. ; Watanabe, T. ; Nasuno, T. ; Naganuma, H. ; Nguyen, T. V. A. ; Noguchi, Y. ; Yasuhira, M. ; Ikeda, S. ; Endoh, T.</creator><creatorcontrib>Nishioka, K. ; Miura, S. ; Honjo, H. ; Inoue, H. ; Watanabe, T. ; Nasuno, T. ; Naganuma, H. ; Nguyen, T. V. A. ; Noguchi, Y. ; Yasuhira, M. ; Ikeda, S. ; Endoh, T.</creatorcontrib><description><![CDATA[We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>), which results in over ten years retention; 2) superiority of large <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> nm node.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3074103</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Damage ; Engineering ; Engineering, Electrical & Electronic ; Interface stability ; Interfacial anisotropy type magnetic tunnel junction (MTJ) ; Low resistance ; low resistance-area (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">RA ) product MGO ; Magnesium oxide ; Magnetic anisotropy ; Magnetic tunneling ; Perpendicular magnetic anisotropy ; Physical Sciences ; Physical vapor deposition ; Physics ; Physics, Applied ; quad interface ; Science & Technology ; spin-transfer-torque magnetoresistive random access memory (STT-MRAM) ; Spintronics ; Technological innovation ; Technology ; Temperature dependence ; Thermal stability ; thermal stability factor ; Tunnel junctions</subject><ispartof>IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2680-2685</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652799800013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</citedby><cites>FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</cites><orcidid>0000-0001-5603-3205 ; 0000-0003-0054-4449 ; 0000-0002-3925-4089 ; 0000-0002-5583-3283 ; 0000-0002-5742-108X ; 0000-0003-2966-8269 ; 0000-0002-4630-0012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422110$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,39267,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9422110$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Miura, S.</creatorcontrib><creatorcontrib>Honjo, H.</creatorcontrib><creatorcontrib>Inoue, H.</creatorcontrib><creatorcontrib>Watanabe, T.</creatorcontrib><creatorcontrib>Nasuno, T.</creatorcontrib><creatorcontrib>Naganuma, H.</creatorcontrib><creatorcontrib>Nguyen, T. V. A.</creatorcontrib><creatorcontrib>Noguchi, Y.</creatorcontrib><creatorcontrib>Yasuhira, M.</creatorcontrib><creatorcontrib>Ikeda, S.</creatorcontrib><creatorcontrib>Endoh, T.</creatorcontrib><title>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><addtitle>IEEE T ELECTRON DEV</addtitle><description><![CDATA[We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>), which results in over ten years retention; 2) superiority of large <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> nm node.]]></description><subject>Damage</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Interface stability</subject><subject>Interfacial anisotropy type magnetic tunnel junction (MTJ)</subject><subject>Low resistance</subject><subject>low resistance-area (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">RA ) product MGO</subject><subject>Magnesium oxide</subject><subject>Magnetic anisotropy</subject><subject>Magnetic tunneling</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physical Sciences</subject><subject>Physical vapor deposition</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>quad interface</subject><subject>Science & Technology</subject><subject>spin-transfer-torque magnetoresistive random access memory (STT-MRAM)</subject><subject>Spintronics</subject><subject>Technological innovation</subject><subject>Technology</subject><subject>Temperature dependence</subject><subject>Thermal stability</subject><subject>thermal stability factor</subject><subject>Tunnel junctions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkU1vEzEQhlcIJELLHYmLJY7IqT9318cobWlRokJZhDitbO9s6yqxg-2l4l_wk-s0FVx78oz1vB7rmap6R8mcUqJOurPTOSOMzjlpBCX8RTWjUjZY1aJ-Wc0IoS1WvOWvqzcp3ZW2FoLNqr_nLqaMTmEbfMpRZxc8CiNiEvst-jrpAV36DHHUFtAOr7vPhf3tSvPD5Vu0CvfoGpJLWXsLeBFBoy8xDJPNaH1zhbQfUAce_QQdUyEz-McJY4jowt3clquN02YD6FvX4fX1Yn1cvRr1JsHbp_Oo-n5-1i0v8Orq0-VyscKWKZoxb6hqlTS0odbURqlhsEq2g5SWWkIUrwdabCjatExAbWRjjLFNO1hZ25FzflR9OLy7i-HXBCn3d2GKvozsmeSEUi6EKBQ5UDaGlCKM_S66rY5_ekr6vfe-eO_33vsn7yXy8RC5BxPGZB0UM_9ihJBaskaptlR0T7fPp5cuPy5oGSafS_T9IeoA_keUYKx8jD8AEuedCQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nishioka, K.</creator><creator>Miura, S.</creator><creator>Honjo, H.</creator><creator>Inoue, H.</creator><creator>Watanabe, T.</creator><creator>Nasuno, T.</creator><creator>Naganuma, H.</creator><creator>Nguyen, T. V. A.</creator><creator>Noguchi, Y.</creator><creator>Yasuhira, M.</creator><creator>Ikeda, S.</creator><creator>Endoh, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5603-3205</orcidid><orcidid>https://orcid.org/0000-0003-0054-4449</orcidid><orcidid>https://orcid.org/0000-0002-3925-4089</orcidid><orcidid>https://orcid.org/0000-0002-5583-3283</orcidid><orcidid>https://orcid.org/0000-0002-5742-108X</orcidid><orcidid>https://orcid.org/0000-0003-2966-8269</orcidid><orcidid>https://orcid.org/0000-0002-4630-0012</orcidid></search><sort><creationdate>20210601</creationdate><title>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</title><author>Nishioka, K. ; Miura, S. ; Honjo, H. ; Inoue, H. ; Watanabe, T. ; Nasuno, T. ; Naganuma, H. ; Nguyen, T. V. A. ; Noguchi, Y. ; Yasuhira, M. ; Ikeda, S. ; Endoh, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Damage</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Interface stability</topic><topic>Interfacial anisotropy type magnetic tunnel junction (MTJ)</topic><topic>Low resistance</topic><topic>low resistance-area (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">RA ) product MGO</topic><topic>Magnesium oxide</topic><topic>Magnetic anisotropy</topic><topic>Magnetic tunneling</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physical Sciences</topic><topic>Physical vapor deposition</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>quad interface</topic><topic>Science & Technology</topic><topic>spin-transfer-torque magnetoresistive random access memory (STT-MRAM)</topic><topic>Spintronics</topic><topic>Technological innovation</topic><topic>Technology</topic><topic>Temperature dependence</topic><topic>Thermal stability</topic><topic>thermal stability factor</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Miura, S.</creatorcontrib><creatorcontrib>Honjo, H.</creatorcontrib><creatorcontrib>Inoue, H.</creatorcontrib><creatorcontrib>Watanabe, T.</creatorcontrib><creatorcontrib>Nasuno, T.</creatorcontrib><creatorcontrib>Naganuma, H.</creatorcontrib><creatorcontrib>Nguyen, T. V. A.</creatorcontrib><creatorcontrib>Noguchi, Y.</creatorcontrib><creatorcontrib>Yasuhira, M.</creatorcontrib><creatorcontrib>Ikeda, S.</creatorcontrib><creatorcontrib>Endoh, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nishioka, K.</au><au>Miura, S.</au><au>Honjo, H.</au><au>Inoue, H.</au><au>Watanabe, T.</au><au>Nasuno, T.</au><au>Naganuma, H.</au><au>Nguyen, T. V. A.</au><au>Noguchi, Y.</au><au>Yasuhira, M.</au><au>Ikeda, S.</au><au>Endoh, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><stitle>IEEE T ELECTRON DEV</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>2680</spage><epage>2685</epage><pages>2680-2685</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>), which results in over ten years retention; 2) superiority of large <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> nm node.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3074103</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5603-3205</orcidid><orcidid>https://orcid.org/0000-0003-0054-4449</orcidid><orcidid>https://orcid.org/0000-0002-3925-4089</orcidid><orcidid>https://orcid.org/0000-0002-5583-3283</orcidid><orcidid>https://orcid.org/0000-0002-5742-108X</orcidid><orcidid>https://orcid.org/0000-0003-2966-8269</orcidid><orcidid>https://orcid.org/0000-0002-4630-0012</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2680-2685 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_webofscience_primary_000652799800013 |
source | IEEE Electronic Library (IEL) |
subjects | Damage Engineering Engineering, Electrical & Electronic Interface stability Interfacial anisotropy type magnetic tunnel junction (MTJ) Low resistance low resistance-area (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">RA ) product MGO Magnesium oxide Magnetic anisotropy Magnetic tunneling Perpendicular magnetic anisotropy Physical Sciences Physical vapor deposition Physics Physics, Applied quad interface Science & Technology spin-transfer-torque magnetoresistive random access memory (STT-MRAM) Spintronics Technological innovation Technology Temperature dependence Thermal stability thermal stability factor Tunnel junctions |
title | First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Demonstration%20of%2025-nm%20Quad%20Interface%20p-MTJ%20Device%20With%20Low%20Resistance-Area%20Product%20MgO%20and%20Ten%20Years%20Retention%20for%20High%20Reliable%20STT-MRAM&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Nishioka,%20K.&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=2680&rft.epage=2685&rft.pages=2680-2685&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3074103&rft_dat=%3Cproquest_RIE%3E2530113444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530113444&rft_id=info:pmid/&rft_ieee_id=9422110&rfr_iscdi=true |