First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM

We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-dam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-06, Vol.68 (6), p.2680-2685
Hauptverfasser: Nishioka, K., Miura, S., Honjo, H., Inoue, H., Watanabe, T., Nasuno, T., Naganuma, H., Nguyen, T. V. A., Noguchi, Y., Yasuhira, M., Ikeda, S., Endoh, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2685
container_issue 6
container_start_page 2680
container_title IEEE transactions on electron devices
container_volume 68
creator Nishioka, K.
Miura, S.
Honjo, H.
Inoue, H.
Watanabe, T.
Nasuno, T.
Naganuma, H.
Nguyen, T. V. A.
Noguchi, Y.
Yasuhira, M.
Ikeda, S.
Endoh, T.
description We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor ( \Delta ), which results in over ten years retention; 2) superiority of large \Delta in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to 2\times nm node.
doi_str_mv 10.1109/TED.2021.3074103
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000652799800013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422110</ieee_id><sourcerecordid>2530113444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhlcIJELLHYmLJY7IqT9318cobWlRokJZhDitbO9s6yqxg-2l4l_wk-s0FVx78oz1vB7rmap6R8mcUqJOurPTOSOMzjlpBCX8RTWjUjZY1aJ-Wc0IoS1WvOWvqzcp3ZW2FoLNqr_nLqaMTmEbfMpRZxc8CiNiEvst-jrpAV36DHHUFtAOr7vPhf3tSvPD5Vu0CvfoGpJLWXsLeBFBoy8xDJPNaH1zhbQfUAce_QQdUyEz-McJY4jowt3clquN02YD6FvX4fX1Yn1cvRr1JsHbp_Oo-n5-1i0v8Orq0-VyscKWKZoxb6hqlTS0odbURqlhsEq2g5SWWkIUrwdabCjatExAbWRjjLFNO1hZ25FzflR9OLy7i-HXBCn3d2GKvozsmeSEUi6EKBQ5UDaGlCKM_S66rY5_ekr6vfe-eO_33vsn7yXy8RC5BxPGZB0UM_9ihJBaskaptlR0T7fPp5cuPy5oGSafS_T9IeoA_keUYKx8jD8AEuedCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530113444</pqid></control><display><type>article</type><title>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</title><source>IEEE Electronic Library (IEL)</source><creator>Nishioka, K. ; Miura, S. ; Honjo, H. ; Inoue, H. ; Watanabe, T. ; Nasuno, T. ; Naganuma, H. ; Nguyen, T. V. A. ; Noguchi, Y. ; Yasuhira, M. ; Ikeda, S. ; Endoh, T.</creator><creatorcontrib>Nishioka, K. ; Miura, S. ; Honjo, H. ; Inoue, H. ; Watanabe, T. ; Nasuno, T. ; Naganuma, H. ; Nguyen, T. V. A. ; Noguchi, Y. ; Yasuhira, M. ; Ikeda, S. ; Endoh, T.</creatorcontrib><description><![CDATA[We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>), which results in over ten years retention; 2) superiority of large <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> nm node.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3074103</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Damage ; Engineering ; Engineering, Electrical &amp; Electronic ; Interface stability ; Interfacial anisotropy type magnetic tunnel junction (MTJ) ; Low resistance ; low resistance-area (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;RA ) product MGO ; Magnesium oxide ; Magnetic anisotropy ; Magnetic tunneling ; Perpendicular magnetic anisotropy ; Physical Sciences ; Physical vapor deposition ; Physics ; Physics, Applied ; quad interface ; Science &amp; Technology ; spin-transfer-torque magnetoresistive random access memory (STT-MRAM) ; Spintronics ; Technological innovation ; Technology ; Temperature dependence ; Thermal stability ; thermal stability factor ; Tunnel junctions</subject><ispartof>IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2680-2685</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000652799800013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</citedby><cites>FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</cites><orcidid>0000-0001-5603-3205 ; 0000-0003-0054-4449 ; 0000-0002-3925-4089 ; 0000-0002-5583-3283 ; 0000-0002-5742-108X ; 0000-0003-2966-8269 ; 0000-0002-4630-0012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422110$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,39267,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9422110$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Miura, S.</creatorcontrib><creatorcontrib>Honjo, H.</creatorcontrib><creatorcontrib>Inoue, H.</creatorcontrib><creatorcontrib>Watanabe, T.</creatorcontrib><creatorcontrib>Nasuno, T.</creatorcontrib><creatorcontrib>Naganuma, H.</creatorcontrib><creatorcontrib>Nguyen, T. V. A.</creatorcontrib><creatorcontrib>Noguchi, Y.</creatorcontrib><creatorcontrib>Yasuhira, M.</creatorcontrib><creatorcontrib>Ikeda, S.</creatorcontrib><creatorcontrib>Endoh, T.</creatorcontrib><title>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><addtitle>IEEE T ELECTRON DEV</addtitle><description><![CDATA[We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>), which results in over ten years retention; 2) superiority of large <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> nm node.]]></description><subject>Damage</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Interface stability</subject><subject>Interfacial anisotropy type magnetic tunnel junction (MTJ)</subject><subject>Low resistance</subject><subject>low resistance-area (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;RA ) product MGO</subject><subject>Magnesium oxide</subject><subject>Magnetic anisotropy</subject><subject>Magnetic tunneling</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Physical Sciences</subject><subject>Physical vapor deposition</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>quad interface</subject><subject>Science &amp; Technology</subject><subject>spin-transfer-torque magnetoresistive random access memory (STT-MRAM)</subject><subject>Spintronics</subject><subject>Technological innovation</subject><subject>Technology</subject><subject>Temperature dependence</subject><subject>Thermal stability</subject><subject>thermal stability factor</subject><subject>Tunnel junctions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkU1vEzEQhlcIJELLHYmLJY7IqT9318cobWlRokJZhDitbO9s6yqxg-2l4l_wk-s0FVx78oz1vB7rmap6R8mcUqJOurPTOSOMzjlpBCX8RTWjUjZY1aJ-Wc0IoS1WvOWvqzcp3ZW2FoLNqr_nLqaMTmEbfMpRZxc8CiNiEvst-jrpAV36DHHUFtAOr7vPhf3tSvPD5Vu0CvfoGpJLWXsLeBFBoy8xDJPNaH1zhbQfUAce_QQdUyEz-McJY4jowt3clquN02YD6FvX4fX1Yn1cvRr1JsHbp_Oo-n5-1i0v8Orq0-VyscKWKZoxb6hqlTS0odbURqlhsEq2g5SWWkIUrwdabCjatExAbWRjjLFNO1hZ25FzflR9OLy7i-HXBCn3d2GKvozsmeSEUi6EKBQ5UDaGlCKM_S66rY5_ekr6vfe-eO_33vsn7yXy8RC5BxPGZB0UM_9ihJBaskaptlR0T7fPp5cuPy5oGSafS_T9IeoA_keUYKx8jD8AEuedCQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Nishioka, K.</creator><creator>Miura, S.</creator><creator>Honjo, H.</creator><creator>Inoue, H.</creator><creator>Watanabe, T.</creator><creator>Nasuno, T.</creator><creator>Naganuma, H.</creator><creator>Nguyen, T. V. A.</creator><creator>Noguchi, Y.</creator><creator>Yasuhira, M.</creator><creator>Ikeda, S.</creator><creator>Endoh, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5603-3205</orcidid><orcidid>https://orcid.org/0000-0003-0054-4449</orcidid><orcidid>https://orcid.org/0000-0002-3925-4089</orcidid><orcidid>https://orcid.org/0000-0002-5583-3283</orcidid><orcidid>https://orcid.org/0000-0002-5742-108X</orcidid><orcidid>https://orcid.org/0000-0003-2966-8269</orcidid><orcidid>https://orcid.org/0000-0002-4630-0012</orcidid></search><sort><creationdate>20210601</creationdate><title>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</title><author>Nishioka, K. ; Miura, S. ; Honjo, H. ; Inoue, H. ; Watanabe, T. ; Nasuno, T. ; Naganuma, H. ; Nguyen, T. V. A. ; Noguchi, Y. ; Yasuhira, M. ; Ikeda, S. ; Endoh, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3719895b171cb6b99ddc958d55c1c00936d1021917824e6b57bbbc78dc56cf333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Damage</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Interface stability</topic><topic>Interfacial anisotropy type magnetic tunnel junction (MTJ)</topic><topic>Low resistance</topic><topic>low resistance-area (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;RA ) product MGO</topic><topic>Magnesium oxide</topic><topic>Magnetic anisotropy</topic><topic>Magnetic tunneling</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Physical Sciences</topic><topic>Physical vapor deposition</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>quad interface</topic><topic>Science &amp; Technology</topic><topic>spin-transfer-torque magnetoresistive random access memory (STT-MRAM)</topic><topic>Spintronics</topic><topic>Technological innovation</topic><topic>Technology</topic><topic>Temperature dependence</topic><topic>Thermal stability</topic><topic>thermal stability factor</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishioka, K.</creatorcontrib><creatorcontrib>Miura, S.</creatorcontrib><creatorcontrib>Honjo, H.</creatorcontrib><creatorcontrib>Inoue, H.</creatorcontrib><creatorcontrib>Watanabe, T.</creatorcontrib><creatorcontrib>Nasuno, T.</creatorcontrib><creatorcontrib>Naganuma, H.</creatorcontrib><creatorcontrib>Nguyen, T. V. A.</creatorcontrib><creatorcontrib>Noguchi, Y.</creatorcontrib><creatorcontrib>Yasuhira, M.</creatorcontrib><creatorcontrib>Ikeda, S.</creatorcontrib><creatorcontrib>Endoh, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nishioka, K.</au><au>Miura, S.</au><au>Honjo, H.</au><au>Inoue, H.</au><au>Watanabe, T.</au><au>Nasuno, T.</au><au>Naganuma, H.</au><au>Nguyen, T. V. A.</au><au>Noguchi, Y.</au><au>Yasuhira, M.</au><au>Ikeda, S.</au><au>Endoh, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><stitle>IEEE T ELECTRON DEV</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>2680</spage><epage>2685</epage><pages>2680-2685</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[We successfully developed 25-nm quad CoFeB/MgO-interfaces perpendicular magnetic tunnel junction (quad-MTJ) with enough thermal stability. To fabricate the quad-MTJ, a physical vapor deposition (PVD) process for depositing novel free layer and low resistance-area ( RA ) product MgO layer and low-damage fabrication processes were developed. The developed quad-MTJ technology and advanced process bring better tunnel magneto resistance (TMR) ratio and RA to quad-MTJ than those of double-interface MTJ (double-MTJ), even though quad-MTJ has an additional MgO layer. Scaling down the MTJ size to 25 nm, we demonstrated the advantages of quad-MTJ compared with double-MTJ as follows: 1) two times larger thermal stability factor (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>), which results in over ten years retention; 2) superiority of large <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> in the measuring temperature range up to 200 °C; 3) ~1.5 times higher write efficiency; 4) lower write current at short write pulse regions at less than 100 ns; and e) excellent endurance of over 10 11 thanks to higher write efficiency, which results from the reduced voltage owing to low RA and the low damage integration process technology. As a result, the developed quad-MTJ technologies will open the way for the realization of high-density STT-MRAM with low power, high speed, high reliability, and excellent scalability down to <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> nm node.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3074103</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5603-3205</orcidid><orcidid>https://orcid.org/0000-0003-0054-4449</orcidid><orcidid>https://orcid.org/0000-0002-3925-4089</orcidid><orcidid>https://orcid.org/0000-0002-5583-3283</orcidid><orcidid>https://orcid.org/0000-0002-5742-108X</orcidid><orcidid>https://orcid.org/0000-0003-2966-8269</orcidid><orcidid>https://orcid.org/0000-0002-4630-0012</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2680-2685
issn 0018-9383
1557-9646
language eng
recordid cdi_webofscience_primary_000652799800013
source IEEE Electronic Library (IEL)
subjects Damage
Engineering
Engineering, Electrical & Electronic
Interface stability
Interfacial anisotropy type magnetic tunnel junction (MTJ)
Low resistance
low resistance-area (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">RA ) product MGO
Magnesium oxide
Magnetic anisotropy
Magnetic tunneling
Perpendicular magnetic anisotropy
Physical Sciences
Physical vapor deposition
Physics
Physics, Applied
quad interface
Science & Technology
spin-transfer-torque magnetoresistive random access memory (STT-MRAM)
Spintronics
Technological innovation
Technology
Temperature dependence
Thermal stability
thermal stability factor
Tunnel junctions
title First Demonstration of 25-nm Quad Interface p-MTJ Device With Low Resistance-Area Product MgO and Ten Years Retention for High Reliable STT-MRAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Demonstration%20of%2025-nm%20Quad%20Interface%20p-MTJ%20Device%20With%20Low%20Resistance-Area%20Product%20MgO%20and%20Ten%20Years%20Retention%20for%20High%20Reliable%20STT-MRAM&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Nishioka,%20K.&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=2680&rft.epage=2685&rft.pages=2680-2685&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3074103&rft_dat=%3Cproquest_RIE%3E2530113444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530113444&rft_id=info:pmid/&rft_ieee_id=9422110&rfr_iscdi=true