Automatic Number Plate Recognition:A Detailed Survey of Relevant Algorithms

Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (9), p.3028, Article 3028
Hauptverfasser: Lubna, Mufti, Naveed, Shah, Syed Afaq Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 3028
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Lubna
Mufti, Naveed
Shah, Syed Afaq Ali
description Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensive performance comparison of various real-time tested and simulated algorithms, including those involving computer vision (CV). ANPR technology has the ability to detect and recognize vehicles by their number-plates using recognition techniques. Even with the best algorithms, a successful ANPR system deployment may require additional hardware to maximize its accuracy. The number plate condition, non-standardized formats, complex scenes, camera quality, camera mount position, tolerance to distortion, motion-blur, contrast problems, reflections, processing and memory limitations, environmental conditions, indoor/outdoor or day/night shots, software-tools or other hardware-based constraint may undermine its performance. This inconsistency, challenging environments and other complexities make ANPR an interesting field for researchers. The Internet-of-Things is beginning to shape future of many industries and is paving new ways for ITS. ANPR can be well utilized by integrating with RFID-systems, GPS, Android platforms and other similar technologies. Deep-Learning techniques are widely utilized in CV field for better detection rates. This research aims to advance the state-of-knowledge in ITS (ANPR) built on CV algorithms; by citing relevant prior work, analyzing and presenting a survey of extraction, segmentation and recognition techniques whilst providing guidelines on future trends in this area.
doi_str_mv 10.3390/s21093028
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000650767100001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_589356be78cd4e02aabd3b3ecb8b9914</doaj_id><sourcerecordid>2520850714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-212e08a3e5e9ac13c5cf8c0220ff12b45b8afb51b5a5990e23902ba2302b0dc73</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoqVw4A-gSFxAaGFsx4nDAWm15aOiAsTH2Ro7k61XSVxsZ6v-e9xuWbWcOHlkP_POO36L4imD10K08CZyBq0Aru4Vh6zi1UJxDvdv1QfFoxg3AFwIoR4WB7mLS1XJw-Lzck5-xORs-WUeDYXy24CJyu9k_Xpyyfnp7bI8poRuoK78MYctXZa-z8BAW5xSuRzWPrh0NsbHxYMeh0hPbs6j4teH9z9XnxanXz-erJanC1vVbVpwxgkUCpLUomXCStsrC9lm3zNuKmkU9kYyI1G2LRDPK3KDPC9ooLONOCpOdrqdx40-D27EcKk9On194cNaY8gbDaSlaoWsDTXKdhUBRzSdMIKsUaZtWZW13u20zmczUmdpSgGHO6J3XyZ3ptd-qxXjomJ1FnhxIxD875li0qOLloYBJ_Jz1FxyUBKa61nP_0E3fg5T_qpMCWCNrBTL1MsdZYOPMVC_N8NAX8Wt93Fn9tlt93vyb74ZUDvggozvo3U0WdpjAFBna3XDcgVs5RJeBb7y85Ry66v_bxV_AAiHxQc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530175481</pqid></control><display><type>article</type><title>Automatic Number Plate Recognition:A Detailed Survey of Relevant Algorithms</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lubna ; Mufti, Naveed ; Shah, Syed Afaq Ali</creator><creatorcontrib>Lubna ; Mufti, Naveed ; Shah, Syed Afaq Ali</creatorcontrib><description>Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensive performance comparison of various real-time tested and simulated algorithms, including those involving computer vision (CV). ANPR technology has the ability to detect and recognize vehicles by their number-plates using recognition techniques. Even with the best algorithms, a successful ANPR system deployment may require additional hardware to maximize its accuracy. The number plate condition, non-standardized formats, complex scenes, camera quality, camera mount position, tolerance to distortion, motion-blur, contrast problems, reflections, processing and memory limitations, environmental conditions, indoor/outdoor or day/night shots, software-tools or other hardware-based constraint may undermine its performance. This inconsistency, challenging environments and other complexities make ANPR an interesting field for researchers. The Internet-of-Things is beginning to shape future of many industries and is paving new ways for ITS. ANPR can be well utilized by integrating with RFID-systems, GPS, Android platforms and other similar technologies. Deep-Learning techniques are widely utilized in CV field for better detection rates. This research aims to advance the state-of-knowledge in ITS (ANPR) built on CV algorithms; by citing relevant prior work, analyzing and presenting a survey of extraction, segmentation and recognition techniques whilst providing guidelines on future trends in this area.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21093028</identifier><identifier>PMID: 33925845</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Access control ; Algorithms ; automatic number plate recognition ; Automation ; Blurring ; Cameras ; Chemistry ; Chemistry, Analytical ; Computer vision ; Engineering ; Engineering, Electrical &amp; Electronic ; Humans ; image processing ; Indoor environments ; Instruments &amp; Instrumentation ; Internet of Things ; License plates ; machine learning ; Metadata ; Motion ; neural networks ; Physical Sciences ; Radio frequency identification ; Recognition ; Review ; Science &amp; Technology ; Security services ; Segmentation ; Software ; Technology ; Tolls ; Transportation planning ; Vehicle identification ; Vehicles</subject><ispartof>Sensors (Basel, Switzerland), 2021-04, Vol.21 (9), p.3028, Article 3028</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000650767100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c469t-212e08a3e5e9ac13c5cf8c0220ff12b45b8afb51b5a5990e23902ba2302b0dc73</citedby><cites>FETCH-LOGICAL-c469t-212e08a3e5e9ac13c5cf8c0220ff12b45b8afb51b5a5990e23902ba2302b0dc73</cites><orcidid>0000-0002-7164-0625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123416/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123416/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33925845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubna</creatorcontrib><creatorcontrib>Mufti, Naveed</creatorcontrib><creatorcontrib>Shah, Syed Afaq Ali</creatorcontrib><title>Automatic Number Plate Recognition:A Detailed Survey of Relevant Algorithms</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><addtitle>Sensors (Basel)</addtitle><description>Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensive performance comparison of various real-time tested and simulated algorithms, including those involving computer vision (CV). ANPR technology has the ability to detect and recognize vehicles by their number-plates using recognition techniques. Even with the best algorithms, a successful ANPR system deployment may require additional hardware to maximize its accuracy. The number plate condition, non-standardized formats, complex scenes, camera quality, camera mount position, tolerance to distortion, motion-blur, contrast problems, reflections, processing and memory limitations, environmental conditions, indoor/outdoor or day/night shots, software-tools or other hardware-based constraint may undermine its performance. This inconsistency, challenging environments and other complexities make ANPR an interesting field for researchers. The Internet-of-Things is beginning to shape future of many industries and is paving new ways for ITS. ANPR can be well utilized by integrating with RFID-systems, GPS, Android platforms and other similar technologies. Deep-Learning techniques are widely utilized in CV field for better detection rates. This research aims to advance the state-of-knowledge in ITS (ANPR) built on CV algorithms; by citing relevant prior work, analyzing and presenting a survey of extraction, segmentation and recognition techniques whilst providing guidelines on future trends in this area.</description><subject>Access control</subject><subject>Algorithms</subject><subject>automatic number plate recognition</subject><subject>Automation</subject><subject>Blurring</subject><subject>Cameras</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Computer vision</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Humans</subject><subject>image processing</subject><subject>Indoor environments</subject><subject>Instruments &amp; Instrumentation</subject><subject>Internet of Things</subject><subject>License plates</subject><subject>machine learning</subject><subject>Metadata</subject><subject>Motion</subject><subject>neural networks</subject><subject>Physical Sciences</subject><subject>Radio frequency identification</subject><subject>Recognition</subject><subject>Review</subject><subject>Science &amp; Technology</subject><subject>Security services</subject><subject>Segmentation</subject><subject>Software</subject><subject>Technology</subject><subject>Tolls</subject><subject>Transportation planning</subject><subject>Vehicle identification</subject><subject>Vehicles</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1v1DAQhiMEoqVw4A-gSFxAaGFsx4nDAWm15aOiAsTH2Ro7k61XSVxsZ6v-e9xuWbWcOHlkP_POO36L4imD10K08CZyBq0Aru4Vh6zi1UJxDvdv1QfFoxg3AFwIoR4WB7mLS1XJw-Lzck5-xORs-WUeDYXy24CJyu9k_Xpyyfnp7bI8poRuoK78MYctXZa-z8BAW5xSuRzWPrh0NsbHxYMeh0hPbs6j4teH9z9XnxanXz-erJanC1vVbVpwxgkUCpLUomXCStsrC9lm3zNuKmkU9kYyI1G2LRDPK3KDPC9ooLONOCpOdrqdx40-D27EcKk9On194cNaY8gbDaSlaoWsDTXKdhUBRzSdMIKsUaZtWZW13u20zmczUmdpSgGHO6J3XyZ3ptd-qxXjomJ1FnhxIxD875li0qOLloYBJ_Jz1FxyUBKa61nP_0E3fg5T_qpMCWCNrBTL1MsdZYOPMVC_N8NAX8Wt93Fn9tlt93vyb74ZUDvggozvo3U0WdpjAFBna3XDcgVs5RJeBb7y85Ry66v_bxV_AAiHxQc</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Lubna</creator><creator>Mufti, Naveed</creator><creator>Shah, Syed Afaq Ali</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7164-0625</orcidid></search><sort><creationdate>20210426</creationdate><title>Automatic Number Plate Recognition:A Detailed Survey of Relevant Algorithms</title><author>Lubna ; Mufti, Naveed ; Shah, Syed Afaq Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-212e08a3e5e9ac13c5cf8c0220ff12b45b8afb51b5a5990e23902ba2302b0dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>automatic number plate recognition</topic><topic>Automation</topic><topic>Blurring</topic><topic>Cameras</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Computer vision</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Humans</topic><topic>image processing</topic><topic>Indoor environments</topic><topic>Instruments &amp; Instrumentation</topic><topic>Internet of Things</topic><topic>License plates</topic><topic>machine learning</topic><topic>Metadata</topic><topic>Motion</topic><topic>neural networks</topic><topic>Physical Sciences</topic><topic>Radio frequency identification</topic><topic>Recognition</topic><topic>Review</topic><topic>Science &amp; Technology</topic><topic>Security services</topic><topic>Segmentation</topic><topic>Software</topic><topic>Technology</topic><topic>Tolls</topic><topic>Transportation planning</topic><topic>Vehicle identification</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubna</creatorcontrib><creatorcontrib>Mufti, Naveed</creatorcontrib><creatorcontrib>Shah, Syed Afaq Ali</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubna</au><au>Mufti, Naveed</au><au>Shah, Syed Afaq Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Number Plate Recognition:A Detailed Survey of Relevant Algorithms</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><addtitle>Sensors (Basel)</addtitle><date>2021-04-26</date><risdate>2021</risdate><volume>21</volume><issue>9</issue><spage>3028</spage><pages>3028-</pages><artnum>3028</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensive performance comparison of various real-time tested and simulated algorithms, including those involving computer vision (CV). ANPR technology has the ability to detect and recognize vehicles by their number-plates using recognition techniques. Even with the best algorithms, a successful ANPR system deployment may require additional hardware to maximize its accuracy. The number plate condition, non-standardized formats, complex scenes, camera quality, camera mount position, tolerance to distortion, motion-blur, contrast problems, reflections, processing and memory limitations, environmental conditions, indoor/outdoor or day/night shots, software-tools or other hardware-based constraint may undermine its performance. This inconsistency, challenging environments and other complexities make ANPR an interesting field for researchers. The Internet-of-Things is beginning to shape future of many industries and is paving new ways for ITS. ANPR can be well utilized by integrating with RFID-systems, GPS, Android platforms and other similar technologies. Deep-Learning techniques are widely utilized in CV field for better detection rates. This research aims to advance the state-of-knowledge in ITS (ANPR) built on CV algorithms; by citing relevant prior work, analyzing and presenting a survey of extraction, segmentation and recognition techniques whilst providing guidelines on future trends in this area.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33925845</pmid><doi>10.3390/s21093028</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-7164-0625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-04, Vol.21 (9), p.3028, Article 3028
issn 1424-8220
1424-8220
language eng
recordid cdi_webofscience_primary_000650767100001CitationCount
source MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Access control
Algorithms
automatic number plate recognition
Automation
Blurring
Cameras
Chemistry
Chemistry, Analytical
Computer vision
Engineering
Engineering, Electrical & Electronic
Humans
image processing
Indoor environments
Instruments & Instrumentation
Internet of Things
License plates
machine learning
Metadata
Motion
neural networks
Physical Sciences
Radio frequency identification
Recognition
Review
Science & Technology
Security services
Segmentation
Software
Technology
Tolls
Transportation planning
Vehicle identification
Vehicles
title Automatic Number Plate Recognition:A Detailed Survey of Relevant Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T03%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Number%20Plate%20Recognition:A%20Detailed%20Survey%20of%20Relevant%20Algorithms&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lubna&rft.date=2021-04-26&rft.volume=21&rft.issue=9&rft.spage=3028&rft.pages=3028-&rft.artnum=3028&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21093028&rft_dat=%3Cproquest_webof%3E2520850714%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530175481&rft_id=info:pmid/33925845&rft_doaj_id=oai_doaj_org_article_589356be78cd4e02aabd3b3ecb8b9914&rfr_iscdi=true