A dynamic flotation model to infer process characteristics from online measurements

•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals engineering 2021-06, Vol.167, p.106878, Article 106878
Hauptverfasser: Oosthuizen, D.J., le Roux, J.D., Craig, I.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106878
container_title Minerals engineering
container_volume 167
creator Oosthuizen, D.J.
le Roux, J.D.
Craig, I.K.
description •A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation. A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.
doi_str_mv 10.1016/j.mineng.2021.106878
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000649740000003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0892687521001072</els_id><sourcerecordid>S0892687521001072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKffwEPu0pm0aZtehDH8BwMP6jmkyRvNaJORZIrf3swOj2IugV9-T96XB6FLShaU0OZ6sxitA_e2KElJc9Twlh-hGeVtWXSMsWM0I7wri5zXp-gsxg0hpG55N0PPS6y_nBytwmbwSSbrHR69hgEnj60zEPA2eAUxYvUug1QJgo3JqohN8CP2bsiz8Qgy7gKM4FI8RydGDhEuDvccvd7dvqweivXT_eNquS5URZpUVLKjutZM8orLhtY9oQxM33CmNallqTUo0mlDadlD02oCuc9Kk986loFqjtj0rwo-xgBGbIMdZfgSlIi9GLERkxixFyMmMRnjE_YJvTdRWXAKftFspmFdy8jPqVZ2crLyO5cyevV_NLdvpjZkCR8WgjgQ2gZQSWhv_970GwnlkIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A dynamic flotation model to infer process characteristics from online measurements</title><source>Access via ScienceDirect (Elsevier)</source><creator>Oosthuizen, D.J. ; le Roux, J.D. ; Craig, I.K.</creator><creatorcontrib>Oosthuizen, D.J. ; le Roux, J.D. ; Craig, I.K.</creatorcontrib><description>•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation. A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.</description><identifier>ISSN: 0892-6875</identifier><identifier>EISSN: 1872-9444</identifier><identifier>DOI: 10.1016/j.mineng.2021.106878</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Engineering ; Engineering, Chemical ; Flotation ; Mineralogy ; Mining &amp; Mineral Processing ; Modelling ; Optimisation ; Physical Sciences ; Process control ; Science &amp; Technology ; Simulation ; Technology</subject><ispartof>Minerals engineering, 2021-06, Vol.167, p.106878, Article 106878</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000649740000003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</citedby><cites>FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</cites><orcidid>0000-0001-7437-3983 ; 0000-0002-4670-8843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mineng.2021.106878$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Oosthuizen, D.J.</creatorcontrib><creatorcontrib>le Roux, J.D.</creatorcontrib><creatorcontrib>Craig, I.K.</creatorcontrib><title>A dynamic flotation model to infer process characteristics from online measurements</title><title>Minerals engineering</title><addtitle>MINER ENG</addtitle><description>•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation. A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.</description><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Flotation</subject><subject>Mineralogy</subject><subject>Mining &amp; Mineral Processing</subject><subject>Modelling</subject><subject>Optimisation</subject><subject>Physical Sciences</subject><subject>Process control</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Technology</subject><issn>0892-6875</issn><issn>1872-9444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE9LwzAYh4MoOKffwEPu0pm0aZtehDH8BwMP6jmkyRvNaJORZIrf3swOj2IugV9-T96XB6FLShaU0OZ6sxitA_e2KElJc9Twlh-hGeVtWXSMsWM0I7wri5zXp-gsxg0hpG55N0PPS6y_nBytwmbwSSbrHR69hgEnj60zEPA2eAUxYvUug1QJgo3JqohN8CP2bsiz8Qgy7gKM4FI8RydGDhEuDvccvd7dvqweivXT_eNquS5URZpUVLKjutZM8orLhtY9oQxM33CmNallqTUo0mlDadlD02oCuc9Kk986loFqjtj0rwo-xgBGbIMdZfgSlIi9GLERkxixFyMmMRnjE_YJvTdRWXAKftFspmFdy8jPqVZ2crLyO5cyevV_NLdvpjZkCR8WgjgQ2gZQSWhv_970GwnlkIw</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Oosthuizen, D.J.</creator><creator>le Roux, J.D.</creator><creator>Craig, I.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7437-3983</orcidid><orcidid>https://orcid.org/0000-0002-4670-8843</orcidid></search><sort><creationdate>20210615</creationdate><title>A dynamic flotation model to infer process characteristics from online measurements</title><author>Oosthuizen, D.J. ; le Roux, J.D. ; Craig, I.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Flotation</topic><topic>Mineralogy</topic><topic>Mining &amp; Mineral Processing</topic><topic>Modelling</topic><topic>Optimisation</topic><topic>Physical Sciences</topic><topic>Process control</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oosthuizen, D.J.</creatorcontrib><creatorcontrib>le Roux, J.D.</creatorcontrib><creatorcontrib>Craig, I.K.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Minerals engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oosthuizen, D.J.</au><au>le Roux, J.D.</au><au>Craig, I.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic flotation model to infer process characteristics from online measurements</atitle><jtitle>Minerals engineering</jtitle><stitle>MINER ENG</stitle><date>2021-06-15</date><risdate>2021</risdate><volume>167</volume><spage>106878</spage><pages>106878-</pages><artnum>106878</artnum><issn>0892-6875</issn><eissn>1872-9444</eissn><abstract>•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation. A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mineng.2021.106878</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7437-3983</orcidid><orcidid>https://orcid.org/0000-0002-4670-8843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0892-6875
ispartof Minerals engineering, 2021-06, Vol.167, p.106878, Article 106878
issn 0892-6875
1872-9444
language eng
recordid cdi_webofscience_primary_000649740000003CitationCount
source Access via ScienceDirect (Elsevier)
subjects Engineering
Engineering, Chemical
Flotation
Mineralogy
Mining & Mineral Processing
Modelling
Optimisation
Physical Sciences
Process control
Science & Technology
Simulation
Technology
title A dynamic flotation model to infer process characteristics from online measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20flotation%20model%20to%20infer%20process%20characteristics%20from%20online%20measurements&rft.jtitle=Minerals%20engineering&rft.au=Oosthuizen,%20D.J.&rft.date=2021-06-15&rft.volume=167&rft.spage=106878&rft.pages=106878-&rft.artnum=106878&rft.issn=0892-6875&rft.eissn=1872-9444&rft_id=info:doi/10.1016/j.mineng.2021.106878&rft_dat=%3Celsevier_webof%3ES0892687521001072%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0892687521001072&rfr_iscdi=true