A dynamic flotation model to infer process characteristics from online measurements
•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation...
Gespeichert in:
Veröffentlicht in: | Minerals engineering 2021-06, Vol.167, p.106878, Article 106878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106878 |
container_title | Minerals engineering |
container_volume | 167 |
creator | Oosthuizen, D.J. le Roux, J.D. Craig, I.K. |
description | •A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation.
A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe. |
doi_str_mv | 10.1016/j.mineng.2021.106878 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000649740000003CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0892687521001072</els_id><sourcerecordid>S0892687521001072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKffwEPu0pm0aZtehDH8BwMP6jmkyRvNaJORZIrf3swOj2IugV9-T96XB6FLShaU0OZ6sxitA_e2KElJc9Twlh-hGeVtWXSMsWM0I7wri5zXp-gsxg0hpG55N0PPS6y_nBytwmbwSSbrHR69hgEnj60zEPA2eAUxYvUug1QJgo3JqohN8CP2bsiz8Qgy7gKM4FI8RydGDhEuDvccvd7dvqweivXT_eNquS5URZpUVLKjutZM8orLhtY9oQxM33CmNallqTUo0mlDadlD02oCuc9Kk986loFqjtj0rwo-xgBGbIMdZfgSlIi9GLERkxixFyMmMRnjE_YJvTdRWXAKftFspmFdy8jPqVZ2crLyO5cyevV_NLdvpjZkCR8WgjgQ2gZQSWhv_970GwnlkIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A dynamic flotation model to infer process characteristics from online measurements</title><source>Access via ScienceDirect (Elsevier)</source><creator>Oosthuizen, D.J. ; le Roux, J.D. ; Craig, I.K.</creator><creatorcontrib>Oosthuizen, D.J. ; le Roux, J.D. ; Craig, I.K.</creatorcontrib><description>•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation.
A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.</description><identifier>ISSN: 0892-6875</identifier><identifier>EISSN: 1872-9444</identifier><identifier>DOI: 10.1016/j.mineng.2021.106878</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Engineering ; Engineering, Chemical ; Flotation ; Mineralogy ; Mining & Mineral Processing ; Modelling ; Optimisation ; Physical Sciences ; Process control ; Science & Technology ; Simulation ; Technology</subject><ispartof>Minerals engineering, 2021-06, Vol.167, p.106878, Article 106878</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000649740000003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</citedby><cites>FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</cites><orcidid>0000-0001-7437-3983 ; 0000-0002-4670-8843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mineng.2021.106878$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Oosthuizen, D.J.</creatorcontrib><creatorcontrib>le Roux, J.D.</creatorcontrib><creatorcontrib>Craig, I.K.</creatorcontrib><title>A dynamic flotation model to infer process characteristics from online measurements</title><title>Minerals engineering</title><addtitle>MINER ENG</addtitle><description>•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation.
A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.</description><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Flotation</subject><subject>Mineralogy</subject><subject>Mining & Mineral Processing</subject><subject>Modelling</subject><subject>Optimisation</subject><subject>Physical Sciences</subject><subject>Process control</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Technology</subject><issn>0892-6875</issn><issn>1872-9444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE9LwzAYh4MoOKffwEPu0pm0aZtehDH8BwMP6jmkyRvNaJORZIrf3swOj2IugV9-T96XB6FLShaU0OZ6sxitA_e2KElJc9Twlh-hGeVtWXSMsWM0I7wri5zXp-gsxg0hpG55N0PPS6y_nBytwmbwSSbrHR69hgEnj60zEPA2eAUxYvUug1QJgo3JqohN8CP2bsiz8Qgy7gKM4FI8RydGDhEuDvccvd7dvqweivXT_eNquS5URZpUVLKjutZM8orLhtY9oQxM33CmNallqTUo0mlDadlD02oCuc9Kk986loFqjtj0rwo-xgBGbIMdZfgSlIi9GLERkxixFyMmMRnjE_YJvTdRWXAKftFspmFdy8jPqVZ2crLyO5cyevV_NLdvpjZkCR8WgjgQ2gZQSWhv_970GwnlkIw</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Oosthuizen, D.J.</creator><creator>le Roux, J.D.</creator><creator>Craig, I.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7437-3983</orcidid><orcidid>https://orcid.org/0000-0002-4670-8843</orcidid></search><sort><creationdate>20210615</creationdate><title>A dynamic flotation model to infer process characteristics from online measurements</title><author>Oosthuizen, D.J. ; le Roux, J.D. ; Craig, I.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-3a91d5d4a838a615b014efb684dd05a2ddec09df112be67d0e91d42f05a94a613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Flotation</topic><topic>Mineralogy</topic><topic>Mining & Mineral Processing</topic><topic>Modelling</topic><topic>Optimisation</topic><topic>Physical Sciences</topic><topic>Process control</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oosthuizen, D.J.</creatorcontrib><creatorcontrib>le Roux, J.D.</creatorcontrib><creatorcontrib>Craig, I.K.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Minerals engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oosthuizen, D.J.</au><au>le Roux, J.D.</au><au>Craig, I.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic flotation model to infer process characteristics from online measurements</atitle><jtitle>Minerals engineering</jtitle><stitle>MINER ENG</stitle><date>2021-06-15</date><risdate>2021</risdate><volume>167</volume><spage>106878</spage><pages>106878-</pages><artnum>106878</artnum><issn>0892-6875</issn><eissn>1872-9444</eissn><abstract>•A dynamic flotation model is derived, combining a variety of modelling approaches.•Important non-linearities for optimal flotation operation are highlighted.•Key flotation parameters can be estimated from commonly available measurements.•The model design allows model-based control and optimisation on industrial sites.•Online parameter estimation enables advanced non-linear flotation optimisation.
A dynamic flotation model incorporating fundamental and phenomenological relationships, information from froth images and steady-state models is described. Model outputs correspond with online measurements commonly available on flotation circuits, and the model parameters are estimated from industrial data. Simulation results are presented, highlighting important non-linearities that need to be taken into account for optimal flotation operation. Observability and controllability analyses are performed, proving that key flotation parameters can theoretically be estimated from online process measurements, and that the set of modelled inputs can control all the model outputs. This model can be used in advanced model-based control and optimisation applications. The ability to estimate key flotation parameters opens up opportunities for improved optimisation of operating variables such as aeration rates, froth depth and the reagent recipe.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mineng.2021.106878</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7437-3983</orcidid><orcidid>https://orcid.org/0000-0002-4670-8843</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6875 |
ispartof | Minerals engineering, 2021-06, Vol.167, p.106878, Article 106878 |
issn | 0892-6875 1872-9444 |
language | eng |
recordid | cdi_webofscience_primary_000649740000003CitationCount |
source | Access via ScienceDirect (Elsevier) |
subjects | Engineering Engineering, Chemical Flotation Mineralogy Mining & Mineral Processing Modelling Optimisation Physical Sciences Process control Science & Technology Simulation Technology |
title | A dynamic flotation model to infer process characteristics from online measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20flotation%20model%20to%20infer%20process%20characteristics%20from%20online%20measurements&rft.jtitle=Minerals%20engineering&rft.au=Oosthuizen,%20D.J.&rft.date=2021-06-15&rft.volume=167&rft.spage=106878&rft.pages=106878-&rft.artnum=106878&rft.issn=0892-6875&rft.eissn=1872-9444&rft_id=info:doi/10.1016/j.mineng.2021.106878&rft_dat=%3Celsevier_webof%3ES0892687521001072%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0892687521001072&rfr_iscdi=true |