Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence
Abstract DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5019 b...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2021-03, Vol.30 (1), p.119-134 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | 1 |
container_start_page | 119 |
container_title | Human molecular genetics |
container_volume | 30 |
creator | Mulder, Rosa H Neumann, Alexander Cecil, Charlotte A M Walton, Esther Houtepen, Lotte C Simpkin, Andrew J Rijlaarsdam, Jolien Heijmans, Bastiaan T Gaunt, Tom R Felix, Janine F Jaddoe, Vincent W V Bakermans-Kranenburg, Marian J Tiemeier, Henning Relton, Caroline L van IJzendoorn, Marinus H Suderman, Matthew |
description | Abstract
DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5019 blood samples collected at multiple time-points from birth to late adolescence from 2348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread, observed at over one-half (53%) of CpGs. In most cases, DNAm was decreasing (36% of CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs). Evidence for non-linear change and inter-individual variation in non-linear trajectories was somewhat less common (11 and 8% of CpGs, respectively). Very little inter-individual variation in change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. In contrast, CpGs with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions. These findings depict a methylome undergoing widespread and often non-linear change throughout childhood. They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.ac.uk. |
doi_str_mv | 10.1093/hmg/ddaa280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000648942100012CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddaa280</oup_id><sourcerecordid>2478586808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-5b288ff77b69a66c8197deba347943cf923d5e1ec5288f0955b986b2e35d1df63</originalsourceid><addsrcrecordid>eNqNkc2PFCEQxYnRuOPoybvhZExMu9DQNHjYZDOuH8lGL3omNFRPs-luWmB2s_-9jDOOejGeqMCvXj3qIfSckjeUKHY-TNtz54ypJXmAVpQLUtVEsodoRZTglVBEnKEnKd0QQgVn7WN0xhhvSNvQFVquFr-FOUxQ3XkH2A5m3gI2s8O3JnqTfZixn_G7z5d4gjzcj6crO_jRDSG4tzhHcwM2h-gh4T6GCXc-5gHngAtf5FwYIVmYLTxFj3ozJnh2PNfo2_urr5uP1fWXD582l9eV5bTOVdPVUvZ923ZCGSGspKp10BnGW8WZ7VXNXAMUbLPniGqaTknR1cAaR10v2BpdHHSXXTeBK7OLyVEv0U8m3utgvP77ZfaD3oZbLQljlLdF4NVRIIbvO0hZT758YRzNDGGXdM1b2Ughy6rX6PUBtTGkFKE_jaFE7zPSJSN9zKjQL_50dmJ_hVIAeQDuoAt9sn6_txNGCBFcKl7TUtF64_PPRDZhN-ffTv6ntdAvD3TYLf-0_AP3Eb4I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478586808</pqid></control><display><type>article</type><title>Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mulder, Rosa H ; Neumann, Alexander ; Cecil, Charlotte A M ; Walton, Esther ; Houtepen, Lotte C ; Simpkin, Andrew J ; Rijlaarsdam, Jolien ; Heijmans, Bastiaan T ; Gaunt, Tom R ; Felix, Janine F ; Jaddoe, Vincent W V ; Bakermans-Kranenburg, Marian J ; Tiemeier, Henning ; Relton, Caroline L ; van IJzendoorn, Marinus H ; Suderman, Matthew</creator><creatorcontrib>Mulder, Rosa H ; Neumann, Alexander ; Cecil, Charlotte A M ; Walton, Esther ; Houtepen, Lotte C ; Simpkin, Andrew J ; Rijlaarsdam, Jolien ; Heijmans, Bastiaan T ; Gaunt, Tom R ; Felix, Janine F ; Jaddoe, Vincent W V ; Bakermans-Kranenburg, Marian J ; Tiemeier, Henning ; Relton, Caroline L ; van IJzendoorn, Marinus H ; Suderman, Matthew</creatorcontrib><description>Abstract
DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5019 blood samples collected at multiple time-points from birth to late adolescence from 2348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread, observed at over one-half (53%) of CpGs. In most cases, DNAm was decreasing (36% of CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs). Evidence for non-linear change and inter-individual variation in non-linear trajectories was somewhat less common (11 and 8% of CpGs, respectively). Very little inter-individual variation in change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. In contrast, CpGs with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions. These findings depict a methylome undergoing widespread and often non-linear change throughout childhood. They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.ac.uk.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddaa280</identifier><identifier>PMID: 33450751</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Adolescent ; Age Factors ; Association Studies ; Biochemistry & Molecular Biology ; Child ; Child, Preschool ; CpG Islands - genetics ; DNA Methylation - genetics ; Epigenesis, Genetic ; Epigenome - genetics ; Female ; Genetics & Heredity ; Humans ; Infant ; Infant, Newborn ; Life Sciences & Biomedicine ; Male ; Science & Technology ; Sex Characteristics</subject><ispartof>Human molecular genetics, 2021-03, Vol.30 (1), p.119-134</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>67</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000648942100012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c412t-5b288ff77b69a66c8197deba347943cf923d5e1ec5288f0955b986b2e35d1df63</citedby><cites>FETCH-LOGICAL-c412t-5b288ff77b69a66c8197deba347943cf923d5e1ec5288f0955b986b2e35d1df63</cites><orcidid>0000-0002-0935-2200 ; 0000-0002-2382-1704 ; 0000-0003-0924-3247 ; 0000-0001-6653-3203 ; 0000-0002-2389-5922 ; 0000-0003-1442-8852 ; 0000-0001-7763-0711 ; 0000-0002-2715-9930 ; 0000-0002-4975-444X ; 0000-0003-2052-4840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,1585,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33450751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulder, Rosa H</creatorcontrib><creatorcontrib>Neumann, Alexander</creatorcontrib><creatorcontrib>Cecil, Charlotte A M</creatorcontrib><creatorcontrib>Walton, Esther</creatorcontrib><creatorcontrib>Houtepen, Lotte C</creatorcontrib><creatorcontrib>Simpkin, Andrew J</creatorcontrib><creatorcontrib>Rijlaarsdam, Jolien</creatorcontrib><creatorcontrib>Heijmans, Bastiaan T</creatorcontrib><creatorcontrib>Gaunt, Tom R</creatorcontrib><creatorcontrib>Felix, Janine F</creatorcontrib><creatorcontrib>Jaddoe, Vincent W V</creatorcontrib><creatorcontrib>Bakermans-Kranenburg, Marian J</creatorcontrib><creatorcontrib>Tiemeier, Henning</creatorcontrib><creatorcontrib>Relton, Caroline L</creatorcontrib><creatorcontrib>van IJzendoorn, Marinus H</creatorcontrib><creatorcontrib>Suderman, Matthew</creatorcontrib><title>Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence</title><title>Human molecular genetics</title><addtitle>HUM MOL GENET</addtitle><addtitle>Hum Mol Genet</addtitle><description>Abstract
DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5019 blood samples collected at multiple time-points from birth to late adolescence from 2348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread, observed at over one-half (53%) of CpGs. In most cases, DNAm was decreasing (36% of CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs). Evidence for non-linear change and inter-individual variation in non-linear trajectories was somewhat less common (11 and 8% of CpGs, respectively). Very little inter-individual variation in change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. In contrast, CpGs with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions. These findings depict a methylome undergoing widespread and often non-linear change throughout childhood. They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.ac.uk.</description><subject>Adolescent</subject><subject>Age Factors</subject><subject>Association Studies</subject><subject>Biochemistry & Molecular Biology</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>CpG Islands - genetics</subject><subject>DNA Methylation - genetics</subject><subject>Epigenesis, Genetic</subject><subject>Epigenome - genetics</subject><subject>Female</subject><subject>Genetics & Heredity</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Life Sciences & Biomedicine</subject><subject>Male</subject><subject>Science & Technology</subject><subject>Sex Characteristics</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc2PFCEQxYnRuOPoybvhZExMu9DQNHjYZDOuH8lGL3omNFRPs-luWmB2s_-9jDOOejGeqMCvXj3qIfSckjeUKHY-TNtz54ypJXmAVpQLUtVEsodoRZTglVBEnKEnKd0QQgVn7WN0xhhvSNvQFVquFr-FOUxQ3XkH2A5m3gI2s8O3JnqTfZixn_G7z5d4gjzcj6crO_jRDSG4tzhHcwM2h-gh4T6GCXc-5gHngAtf5FwYIVmYLTxFj3ozJnh2PNfo2_urr5uP1fWXD582l9eV5bTOVdPVUvZ923ZCGSGspKp10BnGW8WZ7VXNXAMUbLPniGqaTknR1cAaR10v2BpdHHSXXTeBK7OLyVEv0U8m3utgvP77ZfaD3oZbLQljlLdF4NVRIIbvO0hZT758YRzNDGGXdM1b2Ughy6rX6PUBtTGkFKE_jaFE7zPSJSN9zKjQL_50dmJ_hVIAeQDuoAt9sn6_txNGCBFcKl7TUtF64_PPRDZhN-ffTv6ntdAvD3TYLf-0_AP3Eb4I</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Mulder, Rosa H</creator><creator>Neumann, Alexander</creator><creator>Cecil, Charlotte A M</creator><creator>Walton, Esther</creator><creator>Houtepen, Lotte C</creator><creator>Simpkin, Andrew J</creator><creator>Rijlaarsdam, Jolien</creator><creator>Heijmans, Bastiaan T</creator><creator>Gaunt, Tom R</creator><creator>Felix, Janine F</creator><creator>Jaddoe, Vincent W V</creator><creator>Bakermans-Kranenburg, Marian J</creator><creator>Tiemeier, Henning</creator><creator>Relton, Caroline L</creator><creator>van IJzendoorn, Marinus H</creator><creator>Suderman, Matthew</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0935-2200</orcidid><orcidid>https://orcid.org/0000-0002-2382-1704</orcidid><orcidid>https://orcid.org/0000-0003-0924-3247</orcidid><orcidid>https://orcid.org/0000-0001-6653-3203</orcidid><orcidid>https://orcid.org/0000-0002-2389-5922</orcidid><orcidid>https://orcid.org/0000-0003-1442-8852</orcidid><orcidid>https://orcid.org/0000-0001-7763-0711</orcidid><orcidid>https://orcid.org/0000-0002-2715-9930</orcidid><orcidid>https://orcid.org/0000-0002-4975-444X</orcidid><orcidid>https://orcid.org/0000-0003-2052-4840</orcidid></search><sort><creationdate>20210325</creationdate><title>Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence</title><author>Mulder, Rosa H ; Neumann, Alexander ; Cecil, Charlotte A M ; Walton, Esther ; Houtepen, Lotte C ; Simpkin, Andrew J ; Rijlaarsdam, Jolien ; Heijmans, Bastiaan T ; Gaunt, Tom R ; Felix, Janine F ; Jaddoe, Vincent W V ; Bakermans-Kranenburg, Marian J ; Tiemeier, Henning ; Relton, Caroline L ; van IJzendoorn, Marinus H ; Suderman, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-5b288ff77b69a66c8197deba347943cf923d5e1ec5288f0955b986b2e35d1df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adolescent</topic><topic>Age Factors</topic><topic>Association Studies</topic><topic>Biochemistry & Molecular Biology</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>CpG Islands - genetics</topic><topic>DNA Methylation - genetics</topic><topic>Epigenesis, Genetic</topic><topic>Epigenome - genetics</topic><topic>Female</topic><topic>Genetics & Heredity</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Life Sciences & Biomedicine</topic><topic>Male</topic><topic>Science & Technology</topic><topic>Sex Characteristics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulder, Rosa H</creatorcontrib><creatorcontrib>Neumann, Alexander</creatorcontrib><creatorcontrib>Cecil, Charlotte A M</creatorcontrib><creatorcontrib>Walton, Esther</creatorcontrib><creatorcontrib>Houtepen, Lotte C</creatorcontrib><creatorcontrib>Simpkin, Andrew J</creatorcontrib><creatorcontrib>Rijlaarsdam, Jolien</creatorcontrib><creatorcontrib>Heijmans, Bastiaan T</creatorcontrib><creatorcontrib>Gaunt, Tom R</creatorcontrib><creatorcontrib>Felix, Janine F</creatorcontrib><creatorcontrib>Jaddoe, Vincent W V</creatorcontrib><creatorcontrib>Bakermans-Kranenburg, Marian J</creatorcontrib><creatorcontrib>Tiemeier, Henning</creatorcontrib><creatorcontrib>Relton, Caroline L</creatorcontrib><creatorcontrib>van IJzendoorn, Marinus H</creatorcontrib><creatorcontrib>Suderman, Matthew</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulder, Rosa H</au><au>Neumann, Alexander</au><au>Cecil, Charlotte A M</au><au>Walton, Esther</au><au>Houtepen, Lotte C</au><au>Simpkin, Andrew J</au><au>Rijlaarsdam, Jolien</au><au>Heijmans, Bastiaan T</au><au>Gaunt, Tom R</au><au>Felix, Janine F</au><au>Jaddoe, Vincent W V</au><au>Bakermans-Kranenburg, Marian J</au><au>Tiemeier, Henning</au><au>Relton, Caroline L</au><au>van IJzendoorn, Marinus H</au><au>Suderman, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence</atitle><jtitle>Human molecular genetics</jtitle><stitle>HUM MOL GENET</stitle><addtitle>Hum Mol Genet</addtitle><date>2021-03-25</date><risdate>2021</risdate><volume>30</volume><issue>1</issue><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Abstract
DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5019 blood samples collected at multiple time-points from birth to late adolescence from 2348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread, observed at over one-half (53%) of CpGs. In most cases, DNAm was decreasing (36% of CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs). Evidence for non-linear change and inter-individual variation in non-linear trajectories was somewhat less common (11 and 8% of CpGs, respectively). Very little inter-individual variation in change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. In contrast, CpGs with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions. These findings depict a methylome undergoing widespread and often non-linear change throughout childhood. They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.ac.uk.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><pmid>33450751</pmid><doi>10.1093/hmg/ddaa280</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0935-2200</orcidid><orcidid>https://orcid.org/0000-0002-2382-1704</orcidid><orcidid>https://orcid.org/0000-0003-0924-3247</orcidid><orcidid>https://orcid.org/0000-0001-6653-3203</orcidid><orcidid>https://orcid.org/0000-0002-2389-5922</orcidid><orcidid>https://orcid.org/0000-0003-1442-8852</orcidid><orcidid>https://orcid.org/0000-0001-7763-0711</orcidid><orcidid>https://orcid.org/0000-0002-2715-9930</orcidid><orcidid>https://orcid.org/0000-0002-4975-444X</orcidid><orcidid>https://orcid.org/0000-0003-2052-4840</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2021-03, Vol.30 (1), p.119-134 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_webofscience_primary_000648942100012CitationCount |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adolescent Age Factors Association Studies Biochemistry & Molecular Biology Child Child, Preschool CpG Islands - genetics DNA Methylation - genetics Epigenesis, Genetic Epigenome - genetics Female Genetics & Heredity Humans Infant Infant, Newborn Life Sciences & Biomedicine Male Science & Technology Sex Characteristics |
title | Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenome-wide%20change%20and%20variation%20in%20DNA%20methylation%20in%20childhood:%20trajectories%20from%20birth%20to%20late%20adolescence&rft.jtitle=Human%20molecular%20genetics&rft.au=Mulder,%20Rosa%20H&rft.date=2021-03-25&rft.volume=30&rft.issue=1&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddaa280&rft_dat=%3Cproquest_webof%3E2478586808%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478586808&rft_id=info:pmid/33450751&rft_oup_id=10.1093/hmg/ddaa280&rfr_iscdi=true |