Searching for Dark Matter with an Optical Cavity and an Unequal-Delay Interferometer

We propose a new type of experiment that compares the frequency of a clock (an ultrastable optical cavity in this case) at time t to its own frequency some time t-T earlier, by "storing" the output signal (photons) in a fiber delay line. In ultralight oscillating dark matter (DM) models, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-02, Vol.126 (5), p.051301-051301, Article 051301
Hauptverfasser: Savalle, Etienne, Hees, Aurelien, Frank, Florian, Cantin, Etienne, Pottie, Paul-Eric, Roberts, Benjamin M., Cros, Lucie, McAllister, Ben T., Wolf, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new type of experiment that compares the frequency of a clock (an ultrastable optical cavity in this case) at time t to its own frequency some time t-T earlier, by "storing" the output signal (photons) in a fiber delay line. In ultralight oscillating dark matter (DM) models, such an experiment is sensitive to coupling of DM to the standard model fields, through oscillations of the cavity and fiber lengths and of the fiber refractive index. Additionally, the sensitivity is significantly enhanced around the mechanical resonances of the cavity. We present experimental results of such an experiment and report no evidence of DM for masses in the [4.1 x 10(-11), 8.3 x 10(-10)] eV region. In addition, we improve constraints on the involved coupling constants by one order of magnitude in a standard galactic DM model, at the mass corresponding to the resonant frequency of our cavity. Furthermore, in the model of relaxion DM, we improve on existing constraints over the whole DM mass range by about one order of magnitude, and up to 6 orders of magnitude at resonance.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.126.051301