Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels
The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by micr...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2021-08, Vol.52 (4), p.2210-2223 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2223 |
---|---|
container_issue | 4 |
container_start_page | 2210 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 52 |
creator | Lu, Peng-Chong Li, Hua-Bing Feng, Hao Jiang, Zhou-Hua Zhu, Hong-Chun Liu, Zhuang-Zhuang He, Tong |
description | The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5
μ
m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr
2
N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6
μ
m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes. |
doi_str_mv | 10.1007/s11663-021-02171-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000647517600002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549838230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</originalsourceid><addsrcrecordid>eNqNkE9PwyAYhxujifPPF_DUxKOp8sKA9jgXdSY6D-qZUPZ2Y-lgQhfjt5daozfjAXgDv-cFniw7A3IJhMirCCAEKwiFfsg072Uj4GNWQAViP9VEsoIL4IfZUYxrQoioKjbK5rc-bHRnvcsf0ay0s3GT-yaftPP83pl2F_sj6_KZXa6Kue2CX6LLnzttXYsx5teog3XLtIPYxpPsoNFtxNPv9Th7vb15mc6Kh6e7--nkoTAMqq6oZSlRUAmk5lBzJKZpNOpa8BKM1kY3lWZSLChyIxfl2PCSNiVFWBgDuqbsODsf-m6Df9th7NTa74JLVyrKx1XJSspIStEhZYKPMWCjtsFudPhQQFTvTQ3eVHKmvrypHioH6B1r30Rj0Rn8AXtxY8lBilQROrXdl7yp37kuoRf_R1OaDem47Q1i-P3DH8_7BHUGkTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549838230</pqid></control><display><type>article</type><title>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</title><source>Springer journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Lu, Peng-Chong ; Li, Hua-Bing ; Feng, Hao ; Jiang, Zhou-Hua ; Zhu, Hong-Chun ; Liu, Zhuang-Zhuang ; He, Tong</creator><creatorcontrib>Lu, Peng-Chong ; Li, Hua-Bing ; Feng, Hao ; Jiang, Zhou-Hua ; Zhu, Hong-Chun ; Liu, Zhuang-Zhuang ; He, Tong</creatorcontrib><description>The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5
μ
m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr
2
N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6
μ
m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-021-02171-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Annealing ; Austenitizing ; Bearing steels ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion coefficient ; Heat treating ; Heat treatment ; Inclusions ; Liquidus ; Materials Science ; Materials Science, Multidisciplinary ; Metallic Materials ; Metallurgy & Metallurgical Engineering ; Nanotechnology ; Nitrogen ; Original Research Article ; Science & Technology ; Service life ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Technology ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-08, Vol.52 (4), p.2210-2223</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2021</rights><rights>The Minerals, Metals & Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>42</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000647517600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</citedby><cites>FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</cites><orcidid>0000-0001-8887-7250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-021-02171-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-021-02171-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39263,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Lu, Peng-Chong</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhu, Hong-Chun</creatorcontrib><creatorcontrib>Liu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><title>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><addtitle>METALL MATER TRANS B</addtitle><description>The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5
μ
m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr
2
N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6
μ
m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.</description><subject>Aluminum</subject><subject>Annealing</subject><subject>Austenitizing</subject><subject>Bearing steels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion coefficient</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Inclusions</subject><subject>Liquidus</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallic Materials</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Original Research Article</subject><subject>Science & Technology</subject><subject>Service life</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE9PwyAYhxujifPPF_DUxKOp8sKA9jgXdSY6D-qZUPZ2Y-lgQhfjt5daozfjAXgDv-cFniw7A3IJhMirCCAEKwiFfsg072Uj4GNWQAViP9VEsoIL4IfZUYxrQoioKjbK5rc-bHRnvcsf0ay0s3GT-yaftPP83pl2F_sj6_KZXa6Kue2CX6LLnzttXYsx5teog3XLtIPYxpPsoNFtxNPv9Th7vb15mc6Kh6e7--nkoTAMqq6oZSlRUAmk5lBzJKZpNOpa8BKM1kY3lWZSLChyIxfl2PCSNiVFWBgDuqbsODsf-m6Df9th7NTa74JLVyrKx1XJSspIStEhZYKPMWCjtsFudPhQQFTvTQ3eVHKmvrypHioH6B1r30Rj0Rn8AXtxY8lBilQROrXdl7yp37kuoRf_R1OaDem47Q1i-P3DH8_7BHUGkTY</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lu, Peng-Chong</creator><creator>Li, Hua-Bing</creator><creator>Feng, Hao</creator><creator>Jiang, Zhou-Hua</creator><creator>Zhu, Hong-Chun</creator><creator>Liu, Zhuang-Zhuang</creator><creator>He, Tong</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-8887-7250</orcidid></search><sort><creationdate>20210801</creationdate><title>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</title><author>Lu, Peng-Chong ; Li, Hua-Bing ; Feng, Hao ; Jiang, Zhou-Hua ; Zhu, Hong-Chun ; Liu, Zhuang-Zhuang ; He, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Annealing</topic><topic>Austenitizing</topic><topic>Bearing steels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion coefficient</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Inclusions</topic><topic>Liquidus</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallic Materials</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Original Research Article</topic><topic>Science & Technology</topic><topic>Service life</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Peng-Chong</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhu, Hong-Chun</creatorcontrib><creatorcontrib>Liu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Peng-Chong</au><au>Li, Hua-Bing</au><au>Feng, Hao</au><au>Jiang, Zhou-Hua</au><au>Zhu, Hong-Chun</au><au>Liu, Zhuang-Zhuang</au><au>He, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><stitle>METALL MATER TRANS B</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>52</volume><issue>4</issue><spage>2210</spage><epage>2223</epage><pages>2210-2223</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5
μ
m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr
2
N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6
μ
m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-021-02171-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8887-7250</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-08, Vol.52 (4), p.2210-2223 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_webofscience_primary_000647517600002CitationCount |
source | Springer journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Aluminum Annealing Austenitizing Bearing steels Characterization and Evaluation of Materials Chemistry and Materials Science Diffusion coefficient Heat treating Heat treatment Inclusions Liquidus Materials Science Materials Science, Multidisciplinary Metallic Materials Metallurgy & Metallurgical Engineering Nanotechnology Nitrogen Original Research Article Science & Technology Service life Solidification Structural Materials Surfaces and Interfaces Technology Thin Films |
title | Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20Mechanism%20of%20AlN%20Inclusion%20in%20High-Nitrogen%20Stainless%20Bearing%20Steels&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Lu,%20Peng-Chong&rft.date=2021-08-01&rft.volume=52&rft.issue=4&rft.spage=2210&rft.epage=2223&rft.pages=2210-2223&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-021-02171-0&rft_dat=%3Cproquest_webof%3E2549838230%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549838230&rft_id=info:pmid/&rfr_iscdi=true |