Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels

The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2021-08, Vol.52 (4), p.2210-2223
Hauptverfasser: Lu, Peng-Chong, Li, Hua-Bing, Feng, Hao, Jiang, Zhou-Hua, Zhu, Hong-Chun, Liu, Zhuang-Zhuang, He, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2223
container_issue 4
container_start_page 2210
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 52
creator Lu, Peng-Chong
Li, Hua-Bing
Feng, Hao
Jiang, Zhou-Hua
Zhu, Hong-Chun
Liu, Zhuang-Zhuang
He, Tong
description The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5 μ m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr 2 N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6 μ m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.
doi_str_mv 10.1007/s11663-021-02171-0
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000647517600002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549838230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</originalsourceid><addsrcrecordid>eNqNkE9PwyAYhxujifPPF_DUxKOp8sKA9jgXdSY6D-qZUPZ2Y-lgQhfjt5daozfjAXgDv-cFniw7A3IJhMirCCAEKwiFfsg072Uj4GNWQAViP9VEsoIL4IfZUYxrQoioKjbK5rc-bHRnvcsf0ay0s3GT-yaftPP83pl2F_sj6_KZXa6Kue2CX6LLnzttXYsx5teog3XLtIPYxpPsoNFtxNPv9Th7vb15mc6Kh6e7--nkoTAMqq6oZSlRUAmk5lBzJKZpNOpa8BKM1kY3lWZSLChyIxfl2PCSNiVFWBgDuqbsODsf-m6Df9th7NTa74JLVyrKx1XJSspIStEhZYKPMWCjtsFudPhQQFTvTQ3eVHKmvrypHioH6B1r30Rj0Rn8AXtxY8lBilQROrXdl7yp37kuoRf_R1OaDem47Q1i-P3DH8_7BHUGkTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549838230</pqid></control><display><type>article</type><title>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</title><source>Springer journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Lu, Peng-Chong ; Li, Hua-Bing ; Feng, Hao ; Jiang, Zhou-Hua ; Zhu, Hong-Chun ; Liu, Zhuang-Zhuang ; He, Tong</creator><creatorcontrib>Lu, Peng-Chong ; Li, Hua-Bing ; Feng, Hao ; Jiang, Zhou-Hua ; Zhu, Hong-Chun ; Liu, Zhuang-Zhuang ; He, Tong</creatorcontrib><description>The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5 μ m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr 2 N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6 μ m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-021-02171-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Annealing ; Austenitizing ; Bearing steels ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion coefficient ; Heat treating ; Heat treatment ; Inclusions ; Liquidus ; Materials Science ; Materials Science, Multidisciplinary ; Metallic Materials ; Metallurgy &amp; Metallurgical Engineering ; Nanotechnology ; Nitrogen ; Original Research Article ; Science &amp; Technology ; Service life ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Technology ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-08, Vol.52 (4), p.2210-2223</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>42</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000647517600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</citedby><cites>FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</cites><orcidid>0000-0001-8887-7250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-021-02171-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-021-02171-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39263,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Lu, Peng-Chong</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhu, Hong-Chun</creatorcontrib><creatorcontrib>Liu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><title>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><addtitle>METALL MATER TRANS B</addtitle><description>The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5 μ m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr 2 N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6 μ m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.</description><subject>Aluminum</subject><subject>Annealing</subject><subject>Austenitizing</subject><subject>Bearing steels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion coefficient</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Inclusions</subject><subject>Liquidus</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallic Materials</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Original Research Article</subject><subject>Science &amp; Technology</subject><subject>Service life</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technology</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE9PwyAYhxujifPPF_DUxKOp8sKA9jgXdSY6D-qZUPZ2Y-lgQhfjt5daozfjAXgDv-cFniw7A3IJhMirCCAEKwiFfsg072Uj4GNWQAViP9VEsoIL4IfZUYxrQoioKjbK5rc-bHRnvcsf0ay0s3GT-yaftPP83pl2F_sj6_KZXa6Kue2CX6LLnzttXYsx5teog3XLtIPYxpPsoNFtxNPv9Th7vb15mc6Kh6e7--nkoTAMqq6oZSlRUAmk5lBzJKZpNOpa8BKM1kY3lWZSLChyIxfl2PCSNiVFWBgDuqbsODsf-m6Df9th7NTa74JLVyrKx1XJSspIStEhZYKPMWCjtsFudPhQQFTvTQ3eVHKmvrypHioH6B1r30Rj0Rn8AXtxY8lBilQROrXdl7yp37kuoRf_R1OaDem47Q1i-P3DH8_7BHUGkTY</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lu, Peng-Chong</creator><creator>Li, Hua-Bing</creator><creator>Feng, Hao</creator><creator>Jiang, Zhou-Hua</creator><creator>Zhu, Hong-Chun</creator><creator>Liu, Zhuang-Zhuang</creator><creator>He, Tong</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-8887-7250</orcidid></search><sort><creationdate>20210801</creationdate><title>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</title><author>Lu, Peng-Chong ; Li, Hua-Bing ; Feng, Hao ; Jiang, Zhou-Hua ; Zhu, Hong-Chun ; Liu, Zhuang-Zhuang ; He, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b787e62710b51b5e0cffaeab6581caacaf9a376d2e5c7d84c582f82e1dcc1ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Annealing</topic><topic>Austenitizing</topic><topic>Bearing steels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion coefficient</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Inclusions</topic><topic>Liquidus</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallic Materials</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Original Research Article</topic><topic>Science &amp; Technology</topic><topic>Service life</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technology</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Peng-Chong</creatorcontrib><creatorcontrib>Li, Hua-Bing</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><creatorcontrib>Jiang, Zhou-Hua</creatorcontrib><creatorcontrib>Zhu, Hong-Chun</creatorcontrib><creatorcontrib>Liu, Zhuang-Zhuang</creatorcontrib><creatorcontrib>He, Tong</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Peng-Chong</au><au>Li, Hua-Bing</au><au>Feng, Hao</au><au>Jiang, Zhou-Hua</au><au>Zhu, Hong-Chun</au><au>Liu, Zhuang-Zhuang</au><au>He, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><stitle>METALL MATER TRANS B</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>52</volume><issue>4</issue><spage>2210</spage><epage>2223</epage><pages>2210-2223</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5 μ m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr 2 N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6 μ m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-021-02171-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8887-7250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2021-08, Vol.52 (4), p.2210-2223
issn 1073-5615
1543-1916
language eng
recordid cdi_webofscience_primary_000647517600002CitationCount
source Springer journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Aluminum
Annealing
Austenitizing
Bearing steels
Characterization and Evaluation of Materials
Chemistry and Materials Science
Diffusion coefficient
Heat treating
Heat treatment
Inclusions
Liquidus
Materials Science
Materials Science, Multidisciplinary
Metallic Materials
Metallurgy & Metallurgical Engineering
Nanotechnology
Nitrogen
Original Research Article
Science & Technology
Service life
Solidification
Structural Materials
Surfaces and Interfaces
Technology
Thin Films
title Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20Mechanism%20of%20AlN%20Inclusion%20in%20High-Nitrogen%20Stainless%20Bearing%20Steels&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Lu,%20Peng-Chong&rft.date=2021-08-01&rft.volume=52&rft.issue=4&rft.spage=2210&rft.epage=2223&rft.pages=2210-2223&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-021-02171-0&rft_dat=%3Cproquest_webof%3E2549838230%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549838230&rft_id=info:pmid/&rfr_iscdi=true