Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels
The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by micr...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2021-08, Vol.52 (4), p.2210-2223 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The existence of angular and hard AlN inclusions would seriously deteriorate the service life of high-nitrogen stainless bearing steels (HNSBSs). In this work, the formation mechanism of AlN inclusion in HNSBSs under as-cast, annealing and austenitizing states was systematically investigated by microstructure observation and thermodynamic, kinetic analyses. The results showed that the concentration product of Al and N could exceed the critical solubility of AlN inclusion at liquidus temperature with the Al content higher than 0.050 wt pct, which led to the formation of AlN inclusions about 1 to 5
μ
m (equivalent diameter) in liquid steel. Based on the ‘Clyne-Kurz’ model, AlN inclusion could form at the solidifying front due to the enrichment of N in the residual liquid steel with the Al content higher than 0.030 wt pct. Besides, the precipitation of Cr
2
N and the extremely low diffusion coefficient of Al in α phase restrained the precipitation of AlN during annealing at 1023 K. However, AlN and AlN-MnS composite inclusions less than 0.6
μ
m could precipitate during austenitizing at 1323 K with the Al content higher than 0.006 wt pct, which was the critical Al content to avoid AlN formation in HNSBSs after melting, solidification, and heat treatment processes. |
---|---|
ISSN: | 1073-5615 1543-1916 |
DOI: | 10.1007/s11663-021-02171-0 |