Analysis of Mudstone Fracture and Precursory Characteristics after Corrosion of Acidic Solution Based on Dissipative Strain Energy

The deformation and failure of rock materials are closely related to the strain energy characteristics during the loading process. These strain energy characteristics and rock properties are greatly affected when the rock is subjected to the acidic solution. To study the effects of chemical solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-04, Vol.13 (8), p.4478, Article 4478
Hauptverfasser: Dong, Xu, Wu, Yu, Cao, Kewang, Khan, Naseer Muhammad, Hussain, Sajjad, Lee, Seungyeon, Ma, Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deformation and failure of rock materials are closely related to the strain energy characteristics during the loading process. These strain energy characteristics and rock properties are greatly affected when the rock is subjected to the acidic solution. To study the effects of chemical solutions with different pH on the mechanical properties and strain energy mechanism of mudstone, the chemical corrosion mudstone samples are subjected to a uniaxial loading testing machine (CN64 electro-hydraulic servo). The corrosive effects of the acidic solution on the porosity, strain energy characteristics, and failure mode of mudstone samples were thoroughly investigated. The findings of this research indicate that: (1) The rate of change in the porosity and chemical damage coefficient of rock samples after chemical corrosion decreases, which is closely linear with the increase of solution pH; (2) The total strain energy, elastic strain energy, and dissipative strain energy decrease with the increase of pH, and, as a result, it is proposed that the observed turning point of the proportion curve of dissipated strain energy from decline to rise is used as a precursor point of the rock failure; (3) The stress value of the failure precursor point increases and the strain value decreases with the increase in pH value. However, the ratio of the stress value of the failure precursor point to the peak stress hardly changes with pH value, and its value is about 0.883; and (4) Rock samples soaked in a weak acidic chemical solution (pH 7.3 and 5.3) are damaged by tensile crack, while rock samples soaked in a strong acidic chemical solution (pH 3.3 and 1.3) are mainly damaged by the combination of tensile and shear. The findings of this study can be used to provide an experimental and theoretical foundation for monitoring rock engineering disasters such as slope, tunnel, and coal mine failures.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13084478