Kinematics of Footwall Exhumation at Oceanic Detachment faults: Solid‐Block Rotation and Apparent Unbending

Seafloor spreading at slow rates can be accommodated on large‐offset oceanic detachment faults (ODFs), that exhume lower crustal and mantle rocks in footwall domes termed oceanic core complexes (OCCs). Footwall rocks experience large rotation during exhumation, yet important aspects of the kinematic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2021-04, Vol.22 (4), p.n/a, Article 2021
Hauptverfasser: Sandiford, Dan, Brune, Sascha, Glerum, Anne, Naliboff, John, Whittaker, Joanne M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Geochemistry, geophysics, geosystems : G3
container_volume 22
creator Sandiford, Dan
Brune, Sascha
Glerum, Anne
Naliboff, John
Whittaker, Joanne M.
description Seafloor spreading at slow rates can be accommodated on large‐offset oceanic detachment faults (ODFs), that exhume lower crustal and mantle rocks in footwall domes termed oceanic core complexes (OCCs). Footwall rocks experience large rotation during exhumation, yet important aspects of the kinematics—particularly the relative roles of solid‐block rotation and flexure—are not clearly understood. Using a high‐resolution numerical model, we explore the exhumation kinematics in the footwall beneath an emergent ODF/OCC. A key feature of the models is that footwall motion is dominated by solid‐block rotation, accommodated by the nonplanar, concave‐down fault interface. A consequence is that curvature measured along the ODF is representative of a neutral stress configuration, rather than a “bent” one. Instead, it is in the subsequent process of “apparent unbending” that significant flexural stresses are developed in the model footwall. The brittle strain associated with apparent unbending is produced dominantly in extension, beneath the OCC, consistent with earthquake clustering observed in the Trans‐Atlantic Geotraverse at the Mid‐Atlantic Ridge. Key Points Numerical models of footwall exhumation show a significant component of solid‐block rotation Brittle footwall deformation away from the detachment fault is dominated by “apparent unbending” “Unbending” since curvature gets reduced, “apparent” as the footwall is not bent in the first place
doi_str_mv 10.1029/2021GC009681
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000643942600028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d91e6038803453f8a4a78f0cec25a18</doaj_id><sourcerecordid>2516374012</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4341-28053beb021e1d5f883d23d1f8df8e2421afbe968100b978f8ad6e63d0b87b323</originalsourceid><addsrcrecordid>eNqNkU1uFDEQhVsIJEJgxwEssYSB8l-Pm13oTJqISJGArC23XU489NhD_yhkxxE4IyfBTY-irBArl0rfe1XPVRQvKbylwKp3DBhtaoCqVPRRcUQlk6vcWz9-UD8tng3DFoAKKdVRsfsUIu7MGOxAkidnKY23puvI5sfNNLdTJGYklxZNDJac4mjszQ7jSLyZunF4T76kLrjfP3996JL9Rj6n8SCKjpzs96af2avYYnQhXj8vnnjTDfji8B4XV2ebr_XH1cVlc16fXKyM4IKumALJW2xzHKROeqW4Y9xRr5xXyASjxrc4pwRoq7XyyrgSS-6gVeuWM35cnC--Lpmt3vdhZ_o7nUzQfxupv9amz5k71MJVFEvgSgEXkmcrYbIjWLRMGqqy16vFa9-n7xMOo96mqY95fc0kLflaAJ0nvlko26dh6NHfT6Wg5-Poh8fJuFrwW2yTH2zAaPFeAgCl4JVgZa6YqsPyqXWa4pilr_9fmml-oEOHd_9cSjdNs2FMVJT_AdGPsOA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516374012</pqid></control><display><type>article</type><title>Kinematics of Footwall Exhumation at Oceanic Detachment faults: Solid‐Block Rotation and Apparent Unbending</title><source>Wiley Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Open Access</source><source>EZB Electronic Journals Library</source><creator>Sandiford, Dan ; Brune, Sascha ; Glerum, Anne ; Naliboff, John ; Whittaker, Joanne M.</creator><creatorcontrib>Sandiford, Dan ; Brune, Sascha ; Glerum, Anne ; Naliboff, John ; Whittaker, Joanne M.</creatorcontrib><description>Seafloor spreading at slow rates can be accommodated on large‐offset oceanic detachment faults (ODFs), that exhume lower crustal and mantle rocks in footwall domes termed oceanic core complexes (OCCs). Footwall rocks experience large rotation during exhumation, yet important aspects of the kinematics—particularly the relative roles of solid‐block rotation and flexure—are not clearly understood. Using a high‐resolution numerical model, we explore the exhumation kinematics in the footwall beneath an emergent ODF/OCC. A key feature of the models is that footwall motion is dominated by solid‐block rotation, accommodated by the nonplanar, concave‐down fault interface. A consequence is that curvature measured along the ODF is representative of a neutral stress configuration, rather than a “bent” one. Instead, it is in the subsequent process of “apparent unbending” that significant flexural stresses are developed in the model footwall. The brittle strain associated with apparent unbending is produced dominantly in extension, beneath the OCC, consistent with earthquake clustering observed in the Trans‐Atlantic Geotraverse at the Mid‐Atlantic Ridge. Key Points Numerical models of footwall exhumation show a significant component of solid‐block rotation Brittle footwall deformation away from the detachment fault is dominated by “apparent unbending” “Unbending” since curvature gets reduced, “apparent” as the footwall is not bent in the first place</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2021GC009681</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Earthquakes ; Fault lines ; Geochemistry &amp; Geophysics ; Kinematics ; Mathematical models ; Numerical models ; Ocean floor ; Physical Sciences ; Rock ; Rocks ; Rotation ; Science &amp; Technology ; Seafloor spreading ; Seismic activity</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2021-04, Vol.22 (4), p.n/a, Article 2021</ispartof><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000643942600028</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a4341-28053beb021e1d5f883d23d1f8df8e2421afbe968100b978f8ad6e63d0b87b323</citedby><cites>FETCH-LOGICAL-a4341-28053beb021e1d5f883d23d1f8df8e2421afbe968100b978f8ad6e63d0b87b323</cites><orcidid>0000-0002-2207-6837 ; 0000-0003-4985-1810 ; 0000-0002-3170-3935 ; 0000-0002-9481-1749 ; 0000-0002-5697-7203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021GC009681$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021GC009681$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,39263,45579,45580,46057,46481</link.rule.ids></links><search><creatorcontrib>Sandiford, Dan</creatorcontrib><creatorcontrib>Brune, Sascha</creatorcontrib><creatorcontrib>Glerum, Anne</creatorcontrib><creatorcontrib>Naliboff, John</creatorcontrib><creatorcontrib>Whittaker, Joanne M.</creatorcontrib><title>Kinematics of Footwall Exhumation at Oceanic Detachment faults: Solid‐Block Rotation and Apparent Unbending</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>GEOCHEM GEOPHY GEOSY</addtitle><description>Seafloor spreading at slow rates can be accommodated on large‐offset oceanic detachment faults (ODFs), that exhume lower crustal and mantle rocks in footwall domes termed oceanic core complexes (OCCs). Footwall rocks experience large rotation during exhumation, yet important aspects of the kinematics—particularly the relative roles of solid‐block rotation and flexure—are not clearly understood. Using a high‐resolution numerical model, we explore the exhumation kinematics in the footwall beneath an emergent ODF/OCC. A key feature of the models is that footwall motion is dominated by solid‐block rotation, accommodated by the nonplanar, concave‐down fault interface. A consequence is that curvature measured along the ODF is representative of a neutral stress configuration, rather than a “bent” one. Instead, it is in the subsequent process of “apparent unbending” that significant flexural stresses are developed in the model footwall. The brittle strain associated with apparent unbending is produced dominantly in extension, beneath the OCC, consistent with earthquake clustering observed in the Trans‐Atlantic Geotraverse at the Mid‐Atlantic Ridge. Key Points Numerical models of footwall exhumation show a significant component of solid‐block rotation Brittle footwall deformation away from the detachment fault is dominated by “apparent unbending” “Unbending” since curvature gets reduced, “apparent” as the footwall is not bent in the first place</description><subject>Earthquakes</subject><subject>Fault lines</subject><subject>Geochemistry &amp; Geophysics</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Ocean floor</subject><subject>Physical Sciences</subject><subject>Rock</subject><subject>Rocks</subject><subject>Rotation</subject><subject>Science &amp; Technology</subject><subject>Seafloor spreading</subject><subject>Seismic activity</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1uFDEQhVsIJEJgxwEssYSB8l-Pm13oTJqISJGArC23XU489NhD_yhkxxE4IyfBTY-irBArl0rfe1XPVRQvKbylwKp3DBhtaoCqVPRRcUQlk6vcWz9-UD8tng3DFoAKKdVRsfsUIu7MGOxAkidnKY23puvI5sfNNLdTJGYklxZNDJac4mjszQ7jSLyZunF4T76kLrjfP3996JL9Rj6n8SCKjpzs96af2avYYnQhXj8vnnjTDfji8B4XV2ebr_XH1cVlc16fXKyM4IKumALJW2xzHKROeqW4Y9xRr5xXyASjxrc4pwRoq7XyyrgSS-6gVeuWM35cnC--Lpmt3vdhZ_o7nUzQfxupv9amz5k71MJVFEvgSgEXkmcrYbIjWLRMGqqy16vFa9-n7xMOo96mqY95fc0kLflaAJ0nvlko26dh6NHfT6Wg5-Poh8fJuFrwW2yTH2zAaPFeAgCl4JVgZa6YqsPyqXWa4pilr_9fmml-oEOHd_9cSjdNs2FMVJT_AdGPsOA</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Sandiford, Dan</creator><creator>Brune, Sascha</creator><creator>Glerum, Anne</creator><creator>Naliboff, John</creator><creator>Whittaker, Joanne M.</creator><general>Amer Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2207-6837</orcidid><orcidid>https://orcid.org/0000-0003-4985-1810</orcidid><orcidid>https://orcid.org/0000-0002-3170-3935</orcidid><orcidid>https://orcid.org/0000-0002-9481-1749</orcidid><orcidid>https://orcid.org/0000-0002-5697-7203</orcidid></search><sort><creationdate>202104</creationdate><title>Kinematics of Footwall Exhumation at Oceanic Detachment faults: Solid‐Block Rotation and Apparent Unbending</title><author>Sandiford, Dan ; Brune, Sascha ; Glerum, Anne ; Naliboff, John ; Whittaker, Joanne M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4341-28053beb021e1d5f883d23d1f8df8e2421afbe968100b978f8ad6e63d0b87b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Earthquakes</topic><topic>Fault lines</topic><topic>Geochemistry &amp; Geophysics</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Ocean floor</topic><topic>Physical Sciences</topic><topic>Rock</topic><topic>Rocks</topic><topic>Rotation</topic><topic>Science &amp; Technology</topic><topic>Seafloor spreading</topic><topic>Seismic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandiford, Dan</creatorcontrib><creatorcontrib>Brune, Sascha</creatorcontrib><creatorcontrib>Glerum, Anne</creatorcontrib><creatorcontrib>Naliboff, John</creatorcontrib><creatorcontrib>Whittaker, Joanne M.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandiford, Dan</au><au>Brune, Sascha</au><au>Glerum, Anne</au><au>Naliboff, John</au><au>Whittaker, Joanne M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinematics of Footwall Exhumation at Oceanic Detachment faults: Solid‐Block Rotation and Apparent Unbending</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><stitle>GEOCHEM GEOPHY GEOSY</stitle><date>2021-04</date><risdate>2021</risdate><volume>22</volume><issue>4</issue><epage>n/a</epage><artnum>2021</artnum><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Seafloor spreading at slow rates can be accommodated on large‐offset oceanic detachment faults (ODFs), that exhume lower crustal and mantle rocks in footwall domes termed oceanic core complexes (OCCs). Footwall rocks experience large rotation during exhumation, yet important aspects of the kinematics—particularly the relative roles of solid‐block rotation and flexure—are not clearly understood. Using a high‐resolution numerical model, we explore the exhumation kinematics in the footwall beneath an emergent ODF/OCC. A key feature of the models is that footwall motion is dominated by solid‐block rotation, accommodated by the nonplanar, concave‐down fault interface. A consequence is that curvature measured along the ODF is representative of a neutral stress configuration, rather than a “bent” one. Instead, it is in the subsequent process of “apparent unbending” that significant flexural stresses are developed in the model footwall. The brittle strain associated with apparent unbending is produced dominantly in extension, beneath the OCC, consistent with earthquake clustering observed in the Trans‐Atlantic Geotraverse at the Mid‐Atlantic Ridge. Key Points Numerical models of footwall exhumation show a significant component of solid‐block rotation Brittle footwall deformation away from the detachment fault is dominated by “apparent unbending” “Unbending” since curvature gets reduced, “apparent” as the footwall is not bent in the first place</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2021GC009681</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2207-6837</orcidid><orcidid>https://orcid.org/0000-0003-4985-1810</orcidid><orcidid>https://orcid.org/0000-0002-3170-3935</orcidid><orcidid>https://orcid.org/0000-0002-9481-1749</orcidid><orcidid>https://orcid.org/0000-0002-5697-7203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2021-04, Vol.22 (4), p.n/a, Article 2021
issn 1525-2027
1525-2027
language eng
recordid cdi_webofscience_primary_000643942600028
source Wiley Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Open Access; EZB Electronic Journals Library
subjects Earthquakes
Fault lines
Geochemistry & Geophysics
Kinematics
Mathematical models
Numerical models
Ocean floor
Physical Sciences
Rock
Rocks
Rotation
Science & Technology
Seafloor spreading
Seismic activity
title Kinematics of Footwall Exhumation at Oceanic Detachment faults: Solid‐Block Rotation and Apparent Unbending
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-10T16%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinematics%20of%20Footwall%20Exhumation%20at%20Oceanic%20Detachment%20faults:%20Solid%E2%80%90Block%20Rotation%20and%20Apparent%20Unbending&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Sandiford,%20Dan&rft.date=2021-04&rft.volume=22&rft.issue=4&rft.epage=n/a&rft.artnum=2021&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2021GC009681&rft_dat=%3Cproquest_webof%3E2516374012%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516374012&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4d91e6038803453f8a4a78f0cec25a18&rfr_iscdi=true