Organic Biogeochemistry in West Mata, NE Lau Hydrothermal Vent Fields

The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2021-04, Vol.22 (4), p.n/a, Article 2020
Hauptverfasser: Lin, H.‐T., Butterfield, D. A., Baker, E. T., Resing, J. A., Huber, J. A., Cowen, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Geochemistry, geophysics, geosystems : G3
container_volume 22
creator Lin, H.‐T.
Butterfield, D. A.
Baker, E. T.
Resing, J. A.
Huber, J. A.
Cowen, J. P.
description The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back‐arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C‐POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean. Plain Language Summary External energies fuel the production of organic carbon and nitrogen by living organisms. Exploring the organic compounds' concentrations and characteristics help reveal the energy flow and biogeochemical processes. Here, we investigate the marine organic matter in the submarine hot springs (hydrothermal fluids) generated by deep seawater interacting with uplifting magma caused by spreading seafloor. We surveyed the organic carbon and nitrogen contents with samples collected during a cruise in May 2009, in response to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin. The submarine hot spring water, relative to background seawater, had elevated organic c
doi_str_mv 10.1029/2020GC009481
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_webofscience_primary_000643942600017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_bf20b5ffb35e465888eec13c7c21d45b</doaj_id><sourcerecordid>2516373312</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3912-812edf79135600283c08ffb1871a00b115a2a68f9278aa27ee17e3a0eafa16373</originalsourceid><addsrcrecordid>eNqNkEFP3DAQhaOqlUopt_4ASz2WLTN2nDjHNloC0lIuBY7WxBkvXmVj6mSF9t83sAhxqnqa0eh7b-ZNln1B-I4gqzMJEpoaoMoNvsuOUEu9mGfl-zf9x-zTOG4AMNfaHGXL67SmITjxM8Q1R3fP2zBOaS_CIO54nMQVTXQqfi3FinbiYt-lON1z2lIvbnmYxHngvhs_Zx889SOfvNTj7OZ8-bu-WKyum8v6x2pBqkK5MCi582WFShcA0igHxvsWTYkE0CJqklQYX8nSEMmSGUtWBEyesFClOs4uD75dpI19SGFLaW8jBfs8iGltKU3B9WxbL6HVs7vSnBfaGMPsULnSSexy3c5eXw9eDyn-2c1R7Sbu0jCfb6V-3qZQztTpgXIpjmNi_7oVwT493b59-ox_O-CP3EY_usCD41cJABS5qnI5pwd8imP-n67DRFOIQx13wzRL1Ys09Lz_51G2aZqllLmR6i8EjqCL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516373312</pqid></control><display><type>article</type><title>Organic Biogeochemistry in West Mata, NE Lau Hydrothermal Vent Fields</title><source>Wiley Online Library (Open Access Collection)</source><creator>Lin, H.‐T. ; Butterfield, D. A. ; Baker, E. T. ; Resing, J. A. ; Huber, J. A. ; Cowen, J. P.</creator><creatorcontrib>Lin, H.‐T. ; Butterfield, D. A. ; Baker, E. T. ; Resing, J. A. ; Huber, J. A. ; Cowen, J. P.</creatorcontrib><description>The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back‐arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C‐POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean. Plain Language Summary External energies fuel the production of organic carbon and nitrogen by living organisms. Exploring the organic compounds' concentrations and characteristics help reveal the energy flow and biogeochemical processes. Here, we investigate the marine organic matter in the submarine hot springs (hydrothermal fluids) generated by deep seawater interacting with uplifting magma caused by spreading seafloor. We surveyed the organic carbon and nitrogen contents with samples collected during a cruise in May 2009, in response to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin. The submarine hot spring water, relative to background seawater, had elevated organic carbon and nitrogen with unique characters. The amount of elevated organic carbon meets our calculated values based on the energy that the hot spring brings to marine life. We conclude that the underwater hot springs fuel “dark” organic carbon production via unique carbon fixation pathways in the deep ocean. Key Points Unique stable carbon isotope of suspended particulate organic carbon is indicative of unique carbon fixation pathway by vent biomes We estimated first dissolved organic nitrogen for hydrothermal vent fluids and observed enhanced nitrogen fixation and/or denitrification Total dark organic carbon production within the plume matches thermodynamic prediction based on available, reducing chemical substances</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2020GC009481</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Biogeochemistry ; Biological production ; Carbon ; Carbon cycle ; Carbon fixation ; Chemical analysis ; Chemical substances ; Cruises ; Denitrification ; Dissolved organic carbon ; dissolved organic carbon (DOC) ; Dissolved organic nitrogen ; dissolved organic nitrogen (DON) ; Energy flow ; Fluids ; Geochemistry &amp; Geophysics ; Hot springs ; hydrothermal vent fluids and plumes ; Lava ; Magma ; Nitrogen ; Nitrogen fixation ; Ocean floor ; Oceans ; Organic carbon ; Organic compounds ; Organic matter ; Organic nitrogen ; particulate nitrogen (PN) ; Particulate organic carbon ; particulate organic carbon isotopes (δ13C‐POC) ; Physical Sciences ; Science &amp; Technology ; Seawater ; Spring ; Spring water ; thermodynamic prediction ; Volcanic eruptions ; Volcanoes ; Water analysis ; Water column</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2021-04, Vol.22 (4), p.n/a, Article 2020</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000643942600017</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a3912-812edf79135600283c08ffb1871a00b115a2a68f9278aa27ee17e3a0eafa16373</cites><orcidid>0000-0003-3754-6739 ; 0000-0002-7334-4176 ; 0000-0002-1595-9279 ; 0000-0002-8794-4180 ; 0000-0002-4790-7633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GC009481$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GC009481$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,11569,27931,27932,39265,45581,45582,46059,46483</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GC009481$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Lin, H.‐T.</creatorcontrib><creatorcontrib>Butterfield, D. A.</creatorcontrib><creatorcontrib>Baker, E. T.</creatorcontrib><creatorcontrib>Resing, J. A.</creatorcontrib><creatorcontrib>Huber, J. A.</creatorcontrib><creatorcontrib>Cowen, J. P.</creatorcontrib><title>Organic Biogeochemistry in West Mata, NE Lau Hydrothermal Vent Fields</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>GEOCHEM GEOPHY GEOSY</addtitle><description>The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back‐arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C‐POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean. Plain Language Summary External energies fuel the production of organic carbon and nitrogen by living organisms. Exploring the organic compounds' concentrations and characteristics help reveal the energy flow and biogeochemical processes. Here, we investigate the marine organic matter in the submarine hot springs (hydrothermal fluids) generated by deep seawater interacting with uplifting magma caused by spreading seafloor. We surveyed the organic carbon and nitrogen contents with samples collected during a cruise in May 2009, in response to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin. The submarine hot spring water, relative to background seawater, had elevated organic carbon and nitrogen with unique characters. The amount of elevated organic carbon meets our calculated values based on the energy that the hot spring brings to marine life. We conclude that the underwater hot springs fuel “dark” organic carbon production via unique carbon fixation pathways in the deep ocean. Key Points Unique stable carbon isotope of suspended particulate organic carbon is indicative of unique carbon fixation pathway by vent biomes We estimated first dissolved organic nitrogen for hydrothermal vent fluids and observed enhanced nitrogen fixation and/or denitrification Total dark organic carbon production within the plume matches thermodynamic prediction based on available, reducing chemical substances</description><subject>Biogeochemistry</subject><subject>Biological production</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon fixation</subject><subject>Chemical analysis</subject><subject>Chemical substances</subject><subject>Cruises</subject><subject>Denitrification</subject><subject>Dissolved organic carbon</subject><subject>dissolved organic carbon (DOC)</subject><subject>Dissolved organic nitrogen</subject><subject>dissolved organic nitrogen (DON)</subject><subject>Energy flow</subject><subject>Fluids</subject><subject>Geochemistry &amp; Geophysics</subject><subject>Hot springs</subject><subject>hydrothermal vent fluids and plumes</subject><subject>Lava</subject><subject>Magma</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Organic compounds</subject><subject>Organic matter</subject><subject>Organic nitrogen</subject><subject>particulate nitrogen (PN)</subject><subject>Particulate organic carbon</subject><subject>particulate organic carbon isotopes (δ13C‐POC)</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Seawater</subject><subject>Spring</subject><subject>Spring water</subject><subject>thermodynamic prediction</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Water analysis</subject><subject>Water column</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkEFP3DAQhaOqlUopt_4ASz2WLTN2nDjHNloC0lIuBY7WxBkvXmVj6mSF9t83sAhxqnqa0eh7b-ZNln1B-I4gqzMJEpoaoMoNvsuOUEu9mGfl-zf9x-zTOG4AMNfaHGXL67SmITjxM8Q1R3fP2zBOaS_CIO54nMQVTXQqfi3FinbiYt-lON1z2lIvbnmYxHngvhs_Zx889SOfvNTj7OZ8-bu-WKyum8v6x2pBqkK5MCi582WFShcA0igHxvsWTYkE0CJqklQYX8nSEMmSGUtWBEyesFClOs4uD75dpI19SGFLaW8jBfs8iGltKU3B9WxbL6HVs7vSnBfaGMPsULnSSexy3c5eXw9eDyn-2c1R7Sbu0jCfb6V-3qZQztTpgXIpjmNi_7oVwT493b59-ox_O-CP3EY_usCD41cJABS5qnI5pwd8imP-n67DRFOIQx13wzRL1Ys09Lz_51G2aZqllLmR6i8EjqCL</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Lin, H.‐T.</creator><creator>Butterfield, D. A.</creator><creator>Baker, E. T.</creator><creator>Resing, J. A.</creator><creator>Huber, J. A.</creator><creator>Cowen, J. P.</creator><general>Amer Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3754-6739</orcidid><orcidid>https://orcid.org/0000-0002-7334-4176</orcidid><orcidid>https://orcid.org/0000-0002-1595-9279</orcidid><orcidid>https://orcid.org/0000-0002-8794-4180</orcidid><orcidid>https://orcid.org/0000-0002-4790-7633</orcidid></search><sort><creationdate>202104</creationdate><title>Organic Biogeochemistry in West Mata, NE Lau Hydrothermal Vent Fields</title><author>Lin, H.‐T. ; Butterfield, D. A. ; Baker, E. T. ; Resing, J. A. ; Huber, J. A. ; Cowen, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3912-812edf79135600283c08ffb1871a00b115a2a68f9278aa27ee17e3a0eafa16373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biogeochemistry</topic><topic>Biological production</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon fixation</topic><topic>Chemical analysis</topic><topic>Chemical substances</topic><topic>Cruises</topic><topic>Denitrification</topic><topic>Dissolved organic carbon</topic><topic>dissolved organic carbon (DOC)</topic><topic>Dissolved organic nitrogen</topic><topic>dissolved organic nitrogen (DON)</topic><topic>Energy flow</topic><topic>Fluids</topic><topic>Geochemistry &amp; Geophysics</topic><topic>Hot springs</topic><topic>hydrothermal vent fluids and plumes</topic><topic>Lava</topic><topic>Magma</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Organic compounds</topic><topic>Organic matter</topic><topic>Organic nitrogen</topic><topic>particulate nitrogen (PN)</topic><topic>Particulate organic carbon</topic><topic>particulate organic carbon isotopes (δ13C‐POC)</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Seawater</topic><topic>Spring</topic><topic>Spring water</topic><topic>thermodynamic prediction</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Water analysis</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, H.‐T.</creatorcontrib><creatorcontrib>Butterfield, D. A.</creatorcontrib><creatorcontrib>Baker, E. T.</creatorcontrib><creatorcontrib>Resing, J. A.</creatorcontrib><creatorcontrib>Huber, J. A.</creatorcontrib><creatorcontrib>Cowen, J. P.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, H.‐T.</au><au>Butterfield, D. A.</au><au>Baker, E. T.</au><au>Resing, J. A.</au><au>Huber, J. A.</au><au>Cowen, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Biogeochemistry in West Mata, NE Lau Hydrothermal Vent Fields</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><stitle>GEOCHEM GEOPHY GEOSY</stitle><date>2021-04</date><risdate>2021</risdate><volume>22</volume><issue>4</issue><epage>n/a</epage><artnum>2020</artnum><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back‐arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C‐POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean. Plain Language Summary External energies fuel the production of organic carbon and nitrogen by living organisms. Exploring the organic compounds' concentrations and characteristics help reveal the energy flow and biogeochemical processes. Here, we investigate the marine organic matter in the submarine hot springs (hydrothermal fluids) generated by deep seawater interacting with uplifting magma caused by spreading seafloor. We surveyed the organic carbon and nitrogen contents with samples collected during a cruise in May 2009, in response to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin. The submarine hot spring water, relative to background seawater, had elevated organic carbon and nitrogen with unique characters. The amount of elevated organic carbon meets our calculated values based on the energy that the hot spring brings to marine life. We conclude that the underwater hot springs fuel “dark” organic carbon production via unique carbon fixation pathways in the deep ocean. Key Points Unique stable carbon isotope of suspended particulate organic carbon is indicative of unique carbon fixation pathway by vent biomes We estimated first dissolved organic nitrogen for hydrothermal vent fluids and observed enhanced nitrogen fixation and/or denitrification Total dark organic carbon production within the plume matches thermodynamic prediction based on available, reducing chemical substances</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2020GC009481</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3754-6739</orcidid><orcidid>https://orcid.org/0000-0002-7334-4176</orcidid><orcidid>https://orcid.org/0000-0002-1595-9279</orcidid><orcidid>https://orcid.org/0000-0002-8794-4180</orcidid><orcidid>https://orcid.org/0000-0002-4790-7633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2021-04, Vol.22 (4), p.n/a, Article 2020
issn 1525-2027
1525-2027
language eng
recordid cdi_webofscience_primary_000643942600017
source Wiley Online Library (Open Access Collection)
subjects Biogeochemistry
Biological production
Carbon
Carbon cycle
Carbon fixation
Chemical analysis
Chemical substances
Cruises
Denitrification
Dissolved organic carbon
dissolved organic carbon (DOC)
Dissolved organic nitrogen
dissolved organic nitrogen (DON)
Energy flow
Fluids
Geochemistry & Geophysics
Hot springs
hydrothermal vent fluids and plumes
Lava
Magma
Nitrogen
Nitrogen fixation
Ocean floor
Oceans
Organic carbon
Organic compounds
Organic matter
Organic nitrogen
particulate nitrogen (PN)
Particulate organic carbon
particulate organic carbon isotopes (δ13C‐POC)
Physical Sciences
Science & Technology
Seawater
Spring
Spring water
thermodynamic prediction
Volcanic eruptions
Volcanoes
Water analysis
Water column
title Organic Biogeochemistry in West Mata, NE Lau Hydrothermal Vent Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Biogeochemistry%20in%20West%20Mata,%20NE%20Lau%20Hydrothermal%20Vent%20Fields&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Lin,%20H.%E2%80%90T.&rft.date=2021-04&rft.volume=22&rft.issue=4&rft.epage=n/a&rft.artnum=2020&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2020GC009481&rft_dat=%3Cproquest_24P%3E2516373312%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516373312&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_bf20b5ffb35e465888eec13c7c21d45b&rfr_iscdi=true