Structural Complexity of Graphene Oxide: The Kirigami Model

Investigation of highly oxidized graphene oxide (GO) by solid-state nuclear magnetic resonance (NMR) spectroscopy has revealed an exceptional level of hitherto undiscovered structural complexity. A number of chemical moieties were observed for the first time, such as terminal esters, furanic carbons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-04, Vol.13 (15), p.18255-18263
Hauptverfasser: Rawal, Aditya, Che Man, Siti H, Agarwal, Vipul, Yao, Yin, Thickett, Stuart C, Zetterlund, Per B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18263
container_issue 15
container_start_page 18255
container_title ACS applied materials & interfaces
container_volume 13
creator Rawal, Aditya
Che Man, Siti H
Agarwal, Vipul
Yao, Yin
Thickett, Stuart C
Zetterlund, Per B
description Investigation of highly oxidized graphene oxide (GO) by solid-state nuclear magnetic resonance (NMR) spectroscopy has revealed an exceptional level of hitherto undiscovered structural complexity. A number of chemical moieties were observed for the first time, such as terminal esters, furanic carbons, phenolic carbons, and three distinct aromatic and two distinct alkoxy carbon moieties. Quantitative one-dimensional (1D) and two-dimensional (2D) 13C­{1H} NMR spectroscopy established the relative populations and connectivity of these different moieties to provide a consistent “local” chemical structure model. An inferred 2 nm GO sheet size from a very large (∼20%) edge carbon fraction by NMR analysis is at odds with the >20 nm sheet size determined from microscopy and dynamic light scattering. A proposed kirigami model where extensive internal cuts/tears in the basal plane provide the necessary edge sites is presented as a resolution to these divergent results. We expect this work to expand the fundamental understanding of this complex material and enable greater control of the GO structure.
doi_str_mv 10.1021/acsami.1c01157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2508574750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508574750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-99c4943887e4854d7b8cca3abf52d22cb20a863f1dc45e362a00963d9d668aac3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMqKMCCnF7wdMqIKCKOpAmS3HdmiqpAl2IrX_nqAUNqZ7h_N9V_cAcIngFEGMbo2NpiqmyEKEmDgCY6QoTSVm-Phvp3QEzmLcQMgJhuwUjAgRSmCEx-D-vQ2dbbtgymRWV03pd0W7T-o8mQfTrP3WJ8td4fxdslr75LUIxWd_L3mrnS_PwUluyugvDnMCPp4eV7PndLGcv8weFqkhirepUpYqSqQUnkpGnciktYaYLGfYYWwzDI3kJEfOUuYJxwZCxYlTjnNpjCUTcD30NqH-6nxsdVVE68vSbH3dRY0ZlExQwWCPTgfUhjrG4HPdhKIyYa8R1D_C9CBMH4T1gatDd5dV3v3hv4Z64GYA-qDe1F3Y9q_-1_YNY4x0Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508574750</pqid></control><display><type>article</type><title>Structural Complexity of Graphene Oxide: The Kirigami Model</title><source>ACS Publications</source><creator>Rawal, Aditya ; Che Man, Siti H ; Agarwal, Vipul ; Yao, Yin ; Thickett, Stuart C ; Zetterlund, Per B</creator><creatorcontrib>Rawal, Aditya ; Che Man, Siti H ; Agarwal, Vipul ; Yao, Yin ; Thickett, Stuart C ; Zetterlund, Per B</creatorcontrib><description>Investigation of highly oxidized graphene oxide (GO) by solid-state nuclear magnetic resonance (NMR) spectroscopy has revealed an exceptional level of hitherto undiscovered structural complexity. A number of chemical moieties were observed for the first time, such as terminal esters, furanic carbons, phenolic carbons, and three distinct aromatic and two distinct alkoxy carbon moieties. Quantitative one-dimensional (1D) and two-dimensional (2D) 13C­{1H} NMR spectroscopy established the relative populations and connectivity of these different moieties to provide a consistent “local” chemical structure model. An inferred 2 nm GO sheet size from a very large (∼20%) edge carbon fraction by NMR analysis is at odds with the &gt;20 nm sheet size determined from microscopy and dynamic light scattering. A proposed kirigami model where extensive internal cuts/tears in the basal plane provide the necessary edge sites is presented as a resolution to these divergent results. We expect this work to expand the fundamental understanding of this complex material and enable greater control of the GO structure.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c01157</identifier><identifier>PMID: 33797212</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-04, Vol.13 (15), p.18255-18263</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-99c4943887e4854d7b8cca3abf52d22cb20a863f1dc45e362a00963d9d668aac3</citedby><cites>FETCH-LOGICAL-a396t-99c4943887e4854d7b8cca3abf52d22cb20a863f1dc45e362a00963d9d668aac3</cites><orcidid>0000-0002-8168-3856 ; 0000-0002-5396-1265 ; 0000-0002-6239-5410 ; 0000-0003-3149-4464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c01157$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c01157$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33797212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rawal, Aditya</creatorcontrib><creatorcontrib>Che Man, Siti H</creatorcontrib><creatorcontrib>Agarwal, Vipul</creatorcontrib><creatorcontrib>Yao, Yin</creatorcontrib><creatorcontrib>Thickett, Stuart C</creatorcontrib><creatorcontrib>Zetterlund, Per B</creatorcontrib><title>Structural Complexity of Graphene Oxide: The Kirigami Model</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Investigation of highly oxidized graphene oxide (GO) by solid-state nuclear magnetic resonance (NMR) spectroscopy has revealed an exceptional level of hitherto undiscovered structural complexity. A number of chemical moieties were observed for the first time, such as terminal esters, furanic carbons, phenolic carbons, and three distinct aromatic and two distinct alkoxy carbon moieties. Quantitative one-dimensional (1D) and two-dimensional (2D) 13C­{1H} NMR spectroscopy established the relative populations and connectivity of these different moieties to provide a consistent “local” chemical structure model. An inferred 2 nm GO sheet size from a very large (∼20%) edge carbon fraction by NMR analysis is at odds with the &gt;20 nm sheet size determined from microscopy and dynamic light scattering. A proposed kirigami model where extensive internal cuts/tears in the basal plane provide the necessary edge sites is presented as a resolution to these divergent results. We expect this work to expand the fundamental understanding of this complex material and enable greater control of the GO structure.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMqKMCCnF7wdMqIKCKOpAmS3HdmiqpAl2IrX_nqAUNqZ7h_N9V_cAcIngFEGMbo2NpiqmyEKEmDgCY6QoTSVm-Phvp3QEzmLcQMgJhuwUjAgRSmCEx-D-vQ2dbbtgymRWV03pd0W7T-o8mQfTrP3WJ8td4fxdslr75LUIxWd_L3mrnS_PwUluyugvDnMCPp4eV7PndLGcv8weFqkhirepUpYqSqQUnkpGnciktYaYLGfYYWwzDI3kJEfOUuYJxwZCxYlTjnNpjCUTcD30NqH-6nxsdVVE68vSbH3dRY0ZlExQwWCPTgfUhjrG4HPdhKIyYa8R1D_C9CBMH4T1gatDd5dV3v3hv4Z64GYA-qDe1F3Y9q_-1_YNY4x0Tw</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Rawal, Aditya</creator><creator>Che Man, Siti H</creator><creator>Agarwal, Vipul</creator><creator>Yao, Yin</creator><creator>Thickett, Stuart C</creator><creator>Zetterlund, Per B</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8168-3856</orcidid><orcidid>https://orcid.org/0000-0002-5396-1265</orcidid><orcidid>https://orcid.org/0000-0002-6239-5410</orcidid><orcidid>https://orcid.org/0000-0003-3149-4464</orcidid></search><sort><creationdate>20210421</creationdate><title>Structural Complexity of Graphene Oxide: The Kirigami Model</title><author>Rawal, Aditya ; Che Man, Siti H ; Agarwal, Vipul ; Yao, Yin ; Thickett, Stuart C ; Zetterlund, Per B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-99c4943887e4854d7b8cca3abf52d22cb20a863f1dc45e362a00963d9d668aac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rawal, Aditya</creatorcontrib><creatorcontrib>Che Man, Siti H</creatorcontrib><creatorcontrib>Agarwal, Vipul</creatorcontrib><creatorcontrib>Yao, Yin</creatorcontrib><creatorcontrib>Thickett, Stuart C</creatorcontrib><creatorcontrib>Zetterlund, Per B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rawal, Aditya</au><au>Che Man, Siti H</au><au>Agarwal, Vipul</au><au>Yao, Yin</au><au>Thickett, Stuart C</au><au>Zetterlund, Per B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Complexity of Graphene Oxide: The Kirigami Model</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>13</volume><issue>15</issue><spage>18255</spage><epage>18263</epage><pages>18255-18263</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Investigation of highly oxidized graphene oxide (GO) by solid-state nuclear magnetic resonance (NMR) spectroscopy has revealed an exceptional level of hitherto undiscovered structural complexity. A number of chemical moieties were observed for the first time, such as terminal esters, furanic carbons, phenolic carbons, and three distinct aromatic and two distinct alkoxy carbon moieties. Quantitative one-dimensional (1D) and two-dimensional (2D) 13C­{1H} NMR spectroscopy established the relative populations and connectivity of these different moieties to provide a consistent “local” chemical structure model. An inferred 2 nm GO sheet size from a very large (∼20%) edge carbon fraction by NMR analysis is at odds with the &gt;20 nm sheet size determined from microscopy and dynamic light scattering. A proposed kirigami model where extensive internal cuts/tears in the basal plane provide the necessary edge sites is presented as a resolution to these divergent results. We expect this work to expand the fundamental understanding of this complex material and enable greater control of the GO structure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33797212</pmid><doi>10.1021/acsami.1c01157</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8168-3856</orcidid><orcidid>https://orcid.org/0000-0002-5396-1265</orcidid><orcidid>https://orcid.org/0000-0002-6239-5410</orcidid><orcidid>https://orcid.org/0000-0003-3149-4464</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-04, Vol.13 (15), p.18255-18263
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2508574750
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title Structural Complexity of Graphene Oxide: The Kirigami Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Complexity%20of%20Graphene%20Oxide:%20The%20Kirigami%20Model&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Rawal,%20Aditya&rft.date=2021-04-21&rft.volume=13&rft.issue=15&rft.spage=18255&rft.epage=18263&rft.pages=18255-18263&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c01157&rft_dat=%3Cproquest_cross%3E2508574750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508574750&rft_id=info:pmid/33797212&rfr_iscdi=true