Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner
Tillering is one of the most important determinants of biomass and yield in rice ( Oryza sativa L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice grassy t...
Gespeichert in:
Veröffentlicht in: | Journal of plant biology = Singmul Hakhoe chi 2021, 64(5), , pp.417-430 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | 5 |
container_start_page | 417 |
container_title | Journal of plant biology = Singmul Hakhoe chi |
container_volume | 64 |
creator | Kumar, Vikranth Kim, Sung Hoon Adnan, Moch Rosyadi Heo, Jung Jeong, Jin Hee Priatama, Ryza A. Lee, Jeung Joo Kim, Chul Min Je, Byoung Il Park, Soon Ju Xuan, Yuan Hu Han, Chang-deok |
description | Tillering is one of the most important determinants of biomass and yield in rice (
Oryza sativa
L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice
grassy tiller1
(
OsGT1
) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating
OsGT1
RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in
OsGT1
-RNAi mutants but strongly suppressed in
OsGT1
-OX lines. Expression analysis of
OsGT1
in rice
phyB
mutants and in genotypes carrying various genetic combinations of
GT1
RNAi and
phyB
demonstrated that
OsGT1
is not involved in
phyB
-mediated suppression of tiller development in rice. Expression analysis of
fine culm1
(
fc1
), a rice
tb1
homolog, and molecular assays demonstrated that FC1 enhances the expression of
OsGT1
by directly binding to its promoter. Comparison of the transcriptomic profiles of
fc1
and
OsGT1
-RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of
OsGT1
in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses. |
doi_str_mv | 10.1007/s12374-021-09310-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000642893500001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920586529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</originalsourceid><addsrcrecordid>eNqNkUtPGzEUhUeoSFDoH-jKEpsiMPiR8WMZhkcjpUqFUnVpeRxPYgh2sB2iVP3xdZiq7Co2vnfxnaN7fKrqM0YXGCF-mTChfAARwRBJihGUe9UhFoxDxEn9oeyEMCgJlQfVx5QeEGKYCHFY_Z665dJGMFnneQybvADOg3tnLPgyidtfGiSd3YsG44tT4BJogs8xFMUMtFswSXdTfA5-LpxZgKHJCVyHjU85Wv0EQgduG7yz0-D7YnsFR35mV7Y8PoNv2nsbj6v9Ti-T_fR3HlU_bm-mzVc4ntyNmuEYGlrTDK0ktWS4FYaKTgjOLRFSmBlvSyjCpGxRPTCmnVHWckk62TLEuDYC192AGUGPqtPe18dOPRqngnavcx7UY1TD--lIyfJZxa6wJz27iuF5bVNWD2EdfTlPEUlQLVhNZKFIT5kYUoq2U6vonnTcKozUrhHVN6JKI-q1EbUTnfWijW1Dl4yz3th_QlQ6GZRgtC4bwoUW76cbl0tPwTdh7XOR0l6aCu7nNr5l-M95fwCUWqvS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920586529</pqid></control><display><type>article</type><title>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kumar, Vikranth ; Kim, Sung Hoon ; Adnan, Moch Rosyadi ; Heo, Jung ; Jeong, Jin Hee ; Priatama, Ryza A. ; Lee, Jeung Joo ; Kim, Chul Min ; Je, Byoung Il ; Park, Soon Ju ; Xuan, Yuan Hu ; Han, Chang-deok</creator><creatorcontrib>Kumar, Vikranth ; Kim, Sung Hoon ; Adnan, Moch Rosyadi ; Heo, Jung ; Jeong, Jin Hee ; Priatama, Ryza A. ; Lee, Jeung Joo ; Kim, Chul Min ; Je, Byoung Il ; Park, Soon Ju ; Xuan, Yuan Hu ; Han, Chang-deok</creatorcontrib><description>Tillering is one of the most important determinants of biomass and yield in rice (
Oryza sativa
L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice
grassy tiller1
(
OsGT1
) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating
OsGT1
RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in
OsGT1
-RNAi mutants but strongly suppressed in
OsGT1
-OX lines. Expression analysis of
OsGT1
in rice
phyB
mutants and in genotypes carrying various genetic combinations of
GT1
RNAi and
phyB
demonstrated that
OsGT1
is not involved in
phyB
-mediated suppression of tiller development in rice. Expression analysis of
fine culm1
(
fc1
), a rice
tb1
homolog, and molecular assays demonstrated that FC1 enhances the expression of
OsGT1
by directly binding to its promoter. Comparison of the transcriptomic profiles of
fc1
and
OsGT1
-RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of
OsGT1
in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses.</description><identifier>ISSN: 1226-9239</identifier><identifier>EISSN: 1867-0725</identifier><identifier>DOI: 10.1007/s12374-021-09310-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Binding sites ; Biomedical and Life Sciences ; Cloning ; Crop yield ; Gene expression ; Genes ; Genotypes ; Life Sciences ; Life Sciences & Biomedicine ; Light emitting diodes ; Meristems ; Mutants ; Oryza sativa ; Phenotypes ; Phytohormones ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant hormones ; Plant Sciences ; Plant Systematics/Taxonomy/Biogeography ; Plasmids ; Proteins ; Research Article ; Rice ; RNA-mediated interference ; Science & Technology ; Seedlings ; Sorghum ; Tillers ; Transcriptomics ; 생물학</subject><ispartof>Journal of Plant Biology(한국식물학회지), 2021, 64(5), , pp.417-430</ispartof><rights>Korean Society of Plant Biologist 2021</rights><rights>Korean Society of Plant Biologist 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000642893500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</citedby><cites>FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</cites><orcidid>0000-0002-3386-3633 ; 0000-0001-7237-6857 ; 0000-0002-6861-7758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12374-021-09310-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920586529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21392,27928,27929,33748,41492,42561,43809,51323,64389,64393,72473</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002761027$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Vikranth</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Adnan, Moch Rosyadi</creatorcontrib><creatorcontrib>Heo, Jung</creatorcontrib><creatorcontrib>Jeong, Jin Hee</creatorcontrib><creatorcontrib>Priatama, Ryza A.</creatorcontrib><creatorcontrib>Lee, Jeung Joo</creatorcontrib><creatorcontrib>Kim, Chul Min</creatorcontrib><creatorcontrib>Je, Byoung Il</creatorcontrib><creatorcontrib>Park, Soon Ju</creatorcontrib><creatorcontrib>Xuan, Yuan Hu</creatorcontrib><creatorcontrib>Han, Chang-deok</creatorcontrib><title>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</title><title>Journal of plant biology = Singmul Hakhoe chi</title><addtitle>J. Plant Biol</addtitle><addtitle>J PLANT BIOL</addtitle><description>Tillering is one of the most important determinants of biomass and yield in rice (
Oryza sativa
L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice
grassy tiller1
(
OsGT1
) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating
OsGT1
RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in
OsGT1
-RNAi mutants but strongly suppressed in
OsGT1
-OX lines. Expression analysis of
OsGT1
in rice
phyB
mutants and in genotypes carrying various genetic combinations of
GT1
RNAi and
phyB
demonstrated that
OsGT1
is not involved in
phyB
-mediated suppression of tiller development in rice. Expression analysis of
fine culm1
(
fc1
), a rice
tb1
homolog, and molecular assays demonstrated that FC1 enhances the expression of
OsGT1
by directly binding to its promoter. Comparison of the transcriptomic profiles of
fc1
and
OsGT1
-RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of
OsGT1
in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses.</description><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Cloning</subject><subject>Crop yield</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genotypes</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Light emitting diodes</subject><subject>Meristems</subject><subject>Mutants</subject><subject>Oryza sativa</subject><subject>Phenotypes</subject><subject>Phytohormones</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant hormones</subject><subject>Plant Sciences</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Research Article</subject><subject>Rice</subject><subject>RNA-mediated interference</subject><subject>Science & Technology</subject><subject>Seedlings</subject><subject>Sorghum</subject><subject>Tillers</subject><subject>Transcriptomics</subject><subject>생물학</subject><issn>1226-9239</issn><issn>1867-0725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtPGzEUhUeoSFDoH-jKEpsiMPiR8WMZhkcjpUqFUnVpeRxPYgh2sB2iVP3xdZiq7Co2vnfxnaN7fKrqM0YXGCF-mTChfAARwRBJihGUe9UhFoxDxEn9oeyEMCgJlQfVx5QeEGKYCHFY_Z665dJGMFnneQybvADOg3tnLPgyidtfGiSd3YsG44tT4BJogs8xFMUMtFswSXdTfA5-LpxZgKHJCVyHjU85Wv0EQgduG7yz0-D7YnsFR35mV7Y8PoNv2nsbj6v9Ti-T_fR3HlU_bm-mzVc4ntyNmuEYGlrTDK0ktWS4FYaKTgjOLRFSmBlvSyjCpGxRPTCmnVHWckk62TLEuDYC192AGUGPqtPe18dOPRqngnavcx7UY1TD--lIyfJZxa6wJz27iuF5bVNWD2EdfTlPEUlQLVhNZKFIT5kYUoq2U6vonnTcKozUrhHVN6JKI-q1EbUTnfWijW1Dl4yz3th_QlQ6GZRgtC4bwoUW76cbl0tPwTdh7XOR0l6aCu7nNr5l-M95fwCUWqvS</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kumar, Vikranth</creator><creator>Kim, Sung Hoon</creator><creator>Adnan, Moch Rosyadi</creator><creator>Heo, Jung</creator><creator>Jeong, Jin Hee</creator><creator>Priatama, Ryza A.</creator><creator>Lee, Jeung Joo</creator><creator>Kim, Chul Min</creator><creator>Je, Byoung Il</creator><creator>Park, Soon Ju</creator><creator>Xuan, Yuan Hu</creator><creator>Han, Chang-deok</creator><general>Springer Singapore</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>한국식물학회</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3386-3633</orcidid><orcidid>https://orcid.org/0000-0001-7237-6857</orcidid><orcidid>https://orcid.org/0000-0002-6861-7758</orcidid></search><sort><creationdate>20211001</creationdate><title>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</title><author>Kumar, Vikranth ; Kim, Sung Hoon ; Adnan, Moch Rosyadi ; Heo, Jung ; Jeong, Jin Hee ; Priatama, Ryza A. ; Lee, Jeung Joo ; Kim, Chul Min ; Je, Byoung Il ; Park, Soon Ju ; Xuan, Yuan Hu ; Han, Chang-deok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Cloning</topic><topic>Crop yield</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genotypes</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Light emitting diodes</topic><topic>Meristems</topic><topic>Mutants</topic><topic>Oryza sativa</topic><topic>Phenotypes</topic><topic>Phytohormones</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant hormones</topic><topic>Plant Sciences</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Research Article</topic><topic>Rice</topic><topic>RNA-mediated interference</topic><topic>Science & Technology</topic><topic>Seedlings</topic><topic>Sorghum</topic><topic>Tillers</topic><topic>Transcriptomics</topic><topic>생물학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Vikranth</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Adnan, Moch Rosyadi</creatorcontrib><creatorcontrib>Heo, Jung</creatorcontrib><creatorcontrib>Jeong, Jin Hee</creatorcontrib><creatorcontrib>Priatama, Ryza A.</creatorcontrib><creatorcontrib>Lee, Jeung Joo</creatorcontrib><creatorcontrib>Kim, Chul Min</creatorcontrib><creatorcontrib>Je, Byoung Il</creatorcontrib><creatorcontrib>Park, Soon Ju</creatorcontrib><creatorcontrib>Xuan, Yuan Hu</creatorcontrib><creatorcontrib>Han, Chang-deok</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of plant biology = Singmul Hakhoe chi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Vikranth</au><au>Kim, Sung Hoon</au><au>Adnan, Moch Rosyadi</au><au>Heo, Jung</au><au>Jeong, Jin Hee</au><au>Priatama, Ryza A.</au><au>Lee, Jeung Joo</au><au>Kim, Chul Min</au><au>Je, Byoung Il</au><au>Park, Soon Ju</au><au>Xuan, Yuan Hu</au><au>Han, Chang-deok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</atitle><jtitle>Journal of plant biology = Singmul Hakhoe chi</jtitle><stitle>J. Plant Biol</stitle><stitle>J PLANT BIOL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>64</volume><issue>5</issue><spage>417</spage><epage>430</epage><pages>417-430</pages><issn>1226-9239</issn><eissn>1867-0725</eissn><abstract>Tillering is one of the most important determinants of biomass and yield in rice (
Oryza sativa
L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice
grassy tiller1
(
OsGT1
) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating
OsGT1
RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in
OsGT1
-RNAi mutants but strongly suppressed in
OsGT1
-OX lines. Expression analysis of
OsGT1
in rice
phyB
mutants and in genotypes carrying various genetic combinations of
GT1
RNAi and
phyB
demonstrated that
OsGT1
is not involved in
phyB
-mediated suppression of tiller development in rice. Expression analysis of
fine culm1
(
fc1
), a rice
tb1
homolog, and molecular assays demonstrated that FC1 enhances the expression of
OsGT1
by directly binding to its promoter. Comparison of the transcriptomic profiles of
fc1
and
OsGT1
-RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of
OsGT1
in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s12374-021-09310-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3386-3633</orcidid><orcidid>https://orcid.org/0000-0001-7237-6857</orcidid><orcidid>https://orcid.org/0000-0002-6861-7758</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-9239 |
ispartof | Journal of Plant Biology(한국식물학회지), 2021, 64(5), , pp.417-430 |
issn | 1226-9239 1867-0725 |
language | eng |
recordid | cdi_webofscience_primary_000642893500001 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Binding sites Biomedical and Life Sciences Cloning Crop yield Gene expression Genes Genotypes Life Sciences Life Sciences & Biomedicine Light emitting diodes Meristems Mutants Oryza sativa Phenotypes Phytohormones Plant Breeding/Biotechnology Plant Ecology Plant Genetics and Genomics Plant hormones Plant Sciences Plant Systematics/Taxonomy/Biogeography Plasmids Proteins Research Article Rice RNA-mediated interference Science & Technology Seedlings Sorghum Tillers Transcriptomics 생물학 |
title | Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tiller%20Outgrowth%20in%20Rice%20(Oryza%20sativa%20L.)%20is%20Controlled%20by%20OsGT1,%20Which%20Acts%20Downstream%20of%20FC1%20in%20a%20PhyB-Independent%20Manner&rft.jtitle=Journal%20of%20plant%20biology%20=%20Singmul%20Hakhoe%20chi&rft.au=Kumar,%20Vikranth&rft.date=2021-10-01&rft.volume=64&rft.issue=5&rft.spage=417&rft.epage=430&rft.pages=417-430&rft.issn=1226-9239&rft.eissn=1867-0725&rft_id=info:doi/10.1007/s12374-021-09310-9&rft_dat=%3Cproquest_webof%3E2920586529%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920586529&rft_id=info:pmid/&rfr_iscdi=true |