Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner

Tillering is one of the most important determinants of biomass and yield in rice ( Oryza sativa L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice grassy t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant biology = Singmul Hakhoe chi 2021, 64(5), , pp.417-430
Hauptverfasser: Kumar, Vikranth, Kim, Sung Hoon, Adnan, Moch Rosyadi, Heo, Jung, Jeong, Jin Hee, Priatama, Ryza A., Lee, Jeung Joo, Kim, Chul Min, Je, Byoung Il, Park, Soon Ju, Xuan, Yuan Hu, Han, Chang-deok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 5
container_start_page 417
container_title Journal of plant biology = Singmul Hakhoe chi
container_volume 64
creator Kumar, Vikranth
Kim, Sung Hoon
Adnan, Moch Rosyadi
Heo, Jung
Jeong, Jin Hee
Priatama, Ryza A.
Lee, Jeung Joo
Kim, Chul Min
Je, Byoung Il
Park, Soon Ju
Xuan, Yuan Hu
Han, Chang-deok
description Tillering is one of the most important determinants of biomass and yield in rice ( Oryza sativa L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice grassy tiller1 ( OsGT1 ) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating OsGT1 RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in OsGT1 -RNAi mutants but strongly suppressed in OsGT1 -OX lines. Expression analysis of OsGT1 in rice phyB mutants and in genotypes carrying various genetic combinations of GT1 RNAi and phyB demonstrated that OsGT1 is not involved in phyB -mediated suppression of tiller development in rice. Expression analysis of fine culm1 ( fc1 ), a rice tb1 homolog, and molecular assays demonstrated that FC1 enhances the expression of OsGT1 by directly binding to its promoter. Comparison of the transcriptomic profiles of fc1 and OsGT1 -RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of OsGT1 in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses.
doi_str_mv 10.1007/s12374-021-09310-9
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000642893500001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920586529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</originalsourceid><addsrcrecordid>eNqNkUtPGzEUhUeoSFDoH-jKEpsiMPiR8WMZhkcjpUqFUnVpeRxPYgh2sB2iVP3xdZiq7Co2vnfxnaN7fKrqM0YXGCF-mTChfAARwRBJihGUe9UhFoxDxEn9oeyEMCgJlQfVx5QeEGKYCHFY_Z665dJGMFnneQybvADOg3tnLPgyidtfGiSd3YsG44tT4BJogs8xFMUMtFswSXdTfA5-LpxZgKHJCVyHjU85Wv0EQgduG7yz0-D7YnsFR35mV7Y8PoNv2nsbj6v9Ti-T_fR3HlU_bm-mzVc4ntyNmuEYGlrTDK0ktWS4FYaKTgjOLRFSmBlvSyjCpGxRPTCmnVHWckk62TLEuDYC192AGUGPqtPe18dOPRqngnavcx7UY1TD--lIyfJZxa6wJz27iuF5bVNWD2EdfTlPEUlQLVhNZKFIT5kYUoq2U6vonnTcKozUrhHVN6JKI-q1EbUTnfWijW1Dl4yz3th_QlQ6GZRgtC4bwoUW76cbl0tPwTdh7XOR0l6aCu7nNr5l-M95fwCUWqvS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920586529</pqid></control><display><type>article</type><title>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kumar, Vikranth ; Kim, Sung Hoon ; Adnan, Moch Rosyadi ; Heo, Jung ; Jeong, Jin Hee ; Priatama, Ryza A. ; Lee, Jeung Joo ; Kim, Chul Min ; Je, Byoung Il ; Park, Soon Ju ; Xuan, Yuan Hu ; Han, Chang-deok</creator><creatorcontrib>Kumar, Vikranth ; Kim, Sung Hoon ; Adnan, Moch Rosyadi ; Heo, Jung ; Jeong, Jin Hee ; Priatama, Ryza A. ; Lee, Jeung Joo ; Kim, Chul Min ; Je, Byoung Il ; Park, Soon Ju ; Xuan, Yuan Hu ; Han, Chang-deok</creatorcontrib><description>Tillering is one of the most important determinants of biomass and yield in rice ( Oryza sativa L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice grassy tiller1 ( OsGT1 ) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating OsGT1 RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in OsGT1 -RNAi mutants but strongly suppressed in OsGT1 -OX lines. Expression analysis of OsGT1 in rice phyB mutants and in genotypes carrying various genetic combinations of GT1 RNAi and phyB demonstrated that OsGT1 is not involved in phyB -mediated suppression of tiller development in rice. Expression analysis of fine culm1 ( fc1 ), a rice tb1 homolog, and molecular assays demonstrated that FC1 enhances the expression of OsGT1 by directly binding to its promoter. Comparison of the transcriptomic profiles of fc1 and OsGT1 -RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of OsGT1 in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses.</description><identifier>ISSN: 1226-9239</identifier><identifier>EISSN: 1867-0725</identifier><identifier>DOI: 10.1007/s12374-021-09310-9</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Binding sites ; Biomedical and Life Sciences ; Cloning ; Crop yield ; Gene expression ; Genes ; Genotypes ; Life Sciences ; Life Sciences &amp; Biomedicine ; Light emitting diodes ; Meristems ; Mutants ; Oryza sativa ; Phenotypes ; Phytohormones ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant hormones ; Plant Sciences ; Plant Systematics/Taxonomy/Biogeography ; Plasmids ; Proteins ; Research Article ; Rice ; RNA-mediated interference ; Science &amp; Technology ; Seedlings ; Sorghum ; Tillers ; Transcriptomics ; 생물학</subject><ispartof>Journal of Plant Biology(한국식물학회지), 2021, 64(5), , pp.417-430</ispartof><rights>Korean Society of Plant Biologist 2021</rights><rights>Korean Society of Plant Biologist 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000642893500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</citedby><cites>FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</cites><orcidid>0000-0002-3386-3633 ; 0000-0001-7237-6857 ; 0000-0002-6861-7758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12374-021-09310-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920586529?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21392,27928,27929,33748,41492,42561,43809,51323,64389,64393,72473</link.rule.ids><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002761027$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Vikranth</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Adnan, Moch Rosyadi</creatorcontrib><creatorcontrib>Heo, Jung</creatorcontrib><creatorcontrib>Jeong, Jin Hee</creatorcontrib><creatorcontrib>Priatama, Ryza A.</creatorcontrib><creatorcontrib>Lee, Jeung Joo</creatorcontrib><creatorcontrib>Kim, Chul Min</creatorcontrib><creatorcontrib>Je, Byoung Il</creatorcontrib><creatorcontrib>Park, Soon Ju</creatorcontrib><creatorcontrib>Xuan, Yuan Hu</creatorcontrib><creatorcontrib>Han, Chang-deok</creatorcontrib><title>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</title><title>Journal of plant biology = Singmul Hakhoe chi</title><addtitle>J. Plant Biol</addtitle><addtitle>J PLANT BIOL</addtitle><description>Tillering is one of the most important determinants of biomass and yield in rice ( Oryza sativa L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice grassy tiller1 ( OsGT1 ) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating OsGT1 RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in OsGT1 -RNAi mutants but strongly suppressed in OsGT1 -OX lines. Expression analysis of OsGT1 in rice phyB mutants and in genotypes carrying various genetic combinations of GT1 RNAi and phyB demonstrated that OsGT1 is not involved in phyB -mediated suppression of tiller development in rice. Expression analysis of fine culm1 ( fc1 ), a rice tb1 homolog, and molecular assays demonstrated that FC1 enhances the expression of OsGT1 by directly binding to its promoter. Comparison of the transcriptomic profiles of fc1 and OsGT1 -RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of OsGT1 in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses.</description><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Cloning</subject><subject>Crop yield</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genotypes</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Light emitting diodes</subject><subject>Meristems</subject><subject>Mutants</subject><subject>Oryza sativa</subject><subject>Phenotypes</subject><subject>Phytohormones</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant hormones</subject><subject>Plant Sciences</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Research Article</subject><subject>Rice</subject><subject>RNA-mediated interference</subject><subject>Science &amp; Technology</subject><subject>Seedlings</subject><subject>Sorghum</subject><subject>Tillers</subject><subject>Transcriptomics</subject><subject>생물학</subject><issn>1226-9239</issn><issn>1867-0725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtPGzEUhUeoSFDoH-jKEpsiMPiR8WMZhkcjpUqFUnVpeRxPYgh2sB2iVP3xdZiq7Co2vnfxnaN7fKrqM0YXGCF-mTChfAARwRBJihGUe9UhFoxDxEn9oeyEMCgJlQfVx5QeEGKYCHFY_Z665dJGMFnneQybvADOg3tnLPgyidtfGiSd3YsG44tT4BJogs8xFMUMtFswSXdTfA5-LpxZgKHJCVyHjU85Wv0EQgduG7yz0-D7YnsFR35mV7Y8PoNv2nsbj6v9Ti-T_fR3HlU_bm-mzVc4ntyNmuEYGlrTDK0ktWS4FYaKTgjOLRFSmBlvSyjCpGxRPTCmnVHWckk62TLEuDYC192AGUGPqtPe18dOPRqngnavcx7UY1TD--lIyfJZxa6wJz27iuF5bVNWD2EdfTlPEUlQLVhNZKFIT5kYUoq2U6vonnTcKozUrhHVN6JKI-q1EbUTnfWijW1Dl4yz3th_QlQ6GZRgtC4bwoUW76cbl0tPwTdh7XOR0l6aCu7nNr5l-M95fwCUWqvS</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kumar, Vikranth</creator><creator>Kim, Sung Hoon</creator><creator>Adnan, Moch Rosyadi</creator><creator>Heo, Jung</creator><creator>Jeong, Jin Hee</creator><creator>Priatama, Ryza A.</creator><creator>Lee, Jeung Joo</creator><creator>Kim, Chul Min</creator><creator>Je, Byoung Il</creator><creator>Park, Soon Ju</creator><creator>Xuan, Yuan Hu</creator><creator>Han, Chang-deok</creator><general>Springer Singapore</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>한국식물학회</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>ACYCR</scope><orcidid>https://orcid.org/0000-0002-3386-3633</orcidid><orcidid>https://orcid.org/0000-0001-7237-6857</orcidid><orcidid>https://orcid.org/0000-0002-6861-7758</orcidid></search><sort><creationdate>20211001</creationdate><title>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</title><author>Kumar, Vikranth ; Kim, Sung Hoon ; Adnan, Moch Rosyadi ; Heo, Jung ; Jeong, Jin Hee ; Priatama, Ryza A. ; Lee, Jeung Joo ; Kim, Chul Min ; Je, Byoung Il ; Park, Soon Ju ; Xuan, Yuan Hu ; Han, Chang-deok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e925961b8c38f8877e2898cd7b2262699b054ccbd36b792f9b6067ac815f46c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Cloning</topic><topic>Crop yield</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genotypes</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Light emitting diodes</topic><topic>Meristems</topic><topic>Mutants</topic><topic>Oryza sativa</topic><topic>Phenotypes</topic><topic>Phytohormones</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant hormones</topic><topic>Plant Sciences</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Research Article</topic><topic>Rice</topic><topic>RNA-mediated interference</topic><topic>Science &amp; Technology</topic><topic>Seedlings</topic><topic>Sorghum</topic><topic>Tillers</topic><topic>Transcriptomics</topic><topic>생물학</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Vikranth</creatorcontrib><creatorcontrib>Kim, Sung Hoon</creatorcontrib><creatorcontrib>Adnan, Moch Rosyadi</creatorcontrib><creatorcontrib>Heo, Jung</creatorcontrib><creatorcontrib>Jeong, Jin Hee</creatorcontrib><creatorcontrib>Priatama, Ryza A.</creatorcontrib><creatorcontrib>Lee, Jeung Joo</creatorcontrib><creatorcontrib>Kim, Chul Min</creatorcontrib><creatorcontrib>Je, Byoung Il</creatorcontrib><creatorcontrib>Park, Soon Ju</creatorcontrib><creatorcontrib>Xuan, Yuan Hu</creatorcontrib><creatorcontrib>Han, Chang-deok</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Korean Citation Index</collection><jtitle>Journal of plant biology = Singmul Hakhoe chi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Vikranth</au><au>Kim, Sung Hoon</au><au>Adnan, Moch Rosyadi</au><au>Heo, Jung</au><au>Jeong, Jin Hee</au><au>Priatama, Ryza A.</au><au>Lee, Jeung Joo</au><au>Kim, Chul Min</au><au>Je, Byoung Il</au><au>Park, Soon Ju</au><au>Xuan, Yuan Hu</au><au>Han, Chang-deok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner</atitle><jtitle>Journal of plant biology = Singmul Hakhoe chi</jtitle><stitle>J. Plant Biol</stitle><stitle>J PLANT BIOL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>64</volume><issue>5</issue><spage>417</spage><epage>430</epage><pages>417-430</pages><issn>1226-9239</issn><eissn>1867-0725</eissn><abstract>Tillering is one of the most important determinants of biomass and yield in rice ( Oryza sativa L.). The capacity of plants to develop tillers from primordial meristems or buds is determined not only by the genotype but also by environmental cues. Here, we characterized the function of rice grassy tiller1 ( OsGT1 ) and its interaction with other genetic and biological factors involved in tiller bud outgrowth in rice by generating OsGT1 RNA interference (RNAi) and overexpression (OX) lines. The tiller number was increased in OsGT1 -RNAi mutants but strongly suppressed in OsGT1 -OX lines. Expression analysis of OsGT1 in rice phyB mutants and in genotypes carrying various genetic combinations of GT1 RNAi and phyB demonstrated that OsGT1 is not involved in phyB -mediated suppression of tiller development in rice. Expression analysis of fine culm1 ( fc1 ), a rice tb1 homolog, and molecular assays demonstrated that FC1 enhances the expression of OsGT1 by directly binding to its promoter. Comparison of the transcriptomic profiles of fc1 and OsGT1 -RNAi mutants revealed differentially expressed genes (DEGs) common to both genotypes. Finally, analysis of tillering phenotypes of OX and RNAi seedlings treated with various phytohormones implied a possible role of OsGT1 in strigolactone-mediated tiller outgrowth. Overall, this study enhances our understanding of the diverse mechanisms of tiller development in grasses.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s12374-021-09310-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3386-3633</orcidid><orcidid>https://orcid.org/0000-0001-7237-6857</orcidid><orcidid>https://orcid.org/0000-0002-6861-7758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1226-9239
ispartof Journal of Plant Biology(한국식물학회지), 2021, 64(5), , pp.417-430
issn 1226-9239
1867-0725
language eng
recordid cdi_webofscience_primary_000642893500001
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Binding sites
Biomedical and Life Sciences
Cloning
Crop yield
Gene expression
Genes
Genotypes
Life Sciences
Life Sciences & Biomedicine
Light emitting diodes
Meristems
Mutants
Oryza sativa
Phenotypes
Phytohormones
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant hormones
Plant Sciences
Plant Systematics/Taxonomy/Biogeography
Plasmids
Proteins
Research Article
Rice
RNA-mediated interference
Science & Technology
Seedlings
Sorghum
Tillers
Transcriptomics
생물학
title Tiller Outgrowth in Rice (Oryza sativa L.) is Controlled by OsGT1, Which Acts Downstream of FC1 in a PhyB-Independent Manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tiller%20Outgrowth%20in%20Rice%20(Oryza%20sativa%20L.)%20is%20Controlled%20by%20OsGT1,%20Which%20Acts%20Downstream%20of%20FC1%20in%20a%20PhyB-Independent%20Manner&rft.jtitle=Journal%20of%20plant%20biology%20=%20Singmul%20Hakhoe%20chi&rft.au=Kumar,%20Vikranth&rft.date=2021-10-01&rft.volume=64&rft.issue=5&rft.spage=417&rft.epage=430&rft.pages=417-430&rft.issn=1226-9239&rft.eissn=1867-0725&rft_id=info:doi/10.1007/s12374-021-09310-9&rft_dat=%3Cproquest_webof%3E2920586529%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920586529&rft_id=info:pmid/&rfr_iscdi=true