On cluster-tilting graphs for hereditary categories
Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent s...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2021-06, Vol.383, p.107670, Article 107670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107670 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 383 |
creator | Fu, Changjian Geng, Shengfei |
description | Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX. |
doi_str_mv | 10.1016/j.aim.2021.107670 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000642480700017CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870821001080</els_id><sourcerecordid>S0001870821001080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_wNveZeskm02yeJLFLyj0ouew-dhtSrspSar4703Z4lE8DS_MM8zzInSLYYEBs_vNonO7BQGCc-aMwxmaYWigJCDIOZoBAC4FB3GJrmLc5NhQ3MxQtRoLvT3EZEOZ3Da5cSiG0O3Xseh9KNY2WONSF74L3SU7-OBsvEYXfbeN9uY05-jj-em9fS2Xq5e39nFZatLwVNa4Fw1RlTEULCNUGUIrLBSj2tQ1MKwo46bmDeE9E4I1PTFKa9XpClQe1Rzh6a4OPsZge7kPbpd_kRjk0VpuZLaWR2s5WWfmbmK-rPJ91M6O2v5yWZtRQgXwYx88b4v_b7e5h-T82PrDmDL6MKE2N_DpbJAn3LhgdZLGuz_e_AEG_oAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On cluster-tilting graphs for hereditary categories</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Fu, Changjian ; Geng, Shengfei</creator><creatorcontrib>Fu, Changjian ; Geng, Shengfei</creatorcontrib><description>Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2021.107670</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>(Cluster)-tilting graph ; (Cluster)-tilting object ; Happel-Unger's conjecture ; Hereditary category ; Mathematics ; Physical Sciences ; Science & Technology</subject><ispartof>Advances in mathematics (New York. 1965), 2021-06, Vol.383, p.107670, Article 107670</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000642480700017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</citedby><cites>FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aim.2021.107670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,39267,46004</link.rule.ids></links><search><creatorcontrib>Fu, Changjian</creatorcontrib><creatorcontrib>Geng, Shengfei</creatorcontrib><title>On cluster-tilting graphs for hereditary categories</title><title>Advances in mathematics (New York. 1965)</title><addtitle>ADV MATH</addtitle><description>Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX.</description><subject>(Cluster)-tilting graph</subject><subject>(Cluster)-tilting object</subject><subject>Happel-Unger's conjecture</subject><subject>Hereditary category</subject><subject>Mathematics</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LAzEQhoMoWKs_wNveZeskm02yeJLFLyj0ouew-dhtSrspSar4703Z4lE8DS_MM8zzInSLYYEBs_vNonO7BQGCc-aMwxmaYWigJCDIOZoBAC4FB3GJrmLc5NhQ3MxQtRoLvT3EZEOZ3Da5cSiG0O3Xseh9KNY2WONSF74L3SU7-OBsvEYXfbeN9uY05-jj-em9fS2Xq5e39nFZatLwVNa4Fw1RlTEULCNUGUIrLBSj2tQ1MKwo46bmDeE9E4I1PTFKa9XpClQe1Rzh6a4OPsZge7kPbpd_kRjk0VpuZLaWR2s5WWfmbmK-rPJ91M6O2v5yWZtRQgXwYx88b4v_b7e5h-T82PrDmDL6MKE2N_DpbJAn3LhgdZLGuz_e_AEG_oAe</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>Fu, Changjian</creator><creator>Geng, Shengfei</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210604</creationdate><title>On cluster-tilting graphs for hereditary categories</title><author>Fu, Changjian ; Geng, Shengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>(Cluster)-tilting graph</topic><topic>(Cluster)-tilting object</topic><topic>Happel-Unger's conjecture</topic><topic>Hereditary category</topic><topic>Mathematics</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Changjian</creatorcontrib><creatorcontrib>Geng, Shengfei</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Changjian</au><au>Geng, Shengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On cluster-tilting graphs for hereditary categories</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><stitle>ADV MATH</stitle><date>2021-06-04</date><risdate>2021</risdate><volume>383</volume><spage>107670</spage><pages>107670-</pages><artnum>107670</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX.</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2021.107670</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 2021-06, Vol.383, p.107670, Article 107670 |
issn | 0001-8708 1090-2082 |
language | eng |
recordid | cdi_webofscience_primary_000642480700017CitationCount |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | (Cluster)-tilting graph (Cluster)-tilting object Happel-Unger's conjecture Hereditary category Mathematics Physical Sciences Science & Technology |
title | On cluster-tilting graphs for hereditary categories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T00%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20cluster-tilting%20graphs%20for%20hereditary%20categories&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Fu,%20Changjian&rft.date=2021-06-04&rft.volume=383&rft.spage=107670&rft.pages=107670-&rft.artnum=107670&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2021.107670&rft_dat=%3Celsevier_webof%3ES0001870821001080%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870821001080&rfr_iscdi=true |