On cluster-tilting graphs for hereditary categories

Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-06, Vol.383, p.107670, Article 107670
Hauptverfasser: Fu, Changjian, Geng, Shengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107670
container_title Advances in mathematics (New York. 1965)
container_volume 383
creator Fu, Changjian
Geng, Shengfei
description Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX.
doi_str_mv 10.1016/j.aim.2021.107670
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000642480700017CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870821001080</els_id><sourcerecordid>S0001870821001080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_wNveZeskm02yeJLFLyj0ouew-dhtSrspSar4703Z4lE8DS_MM8zzInSLYYEBs_vNonO7BQGCc-aMwxmaYWigJCDIOZoBAC4FB3GJrmLc5NhQ3MxQtRoLvT3EZEOZ3Da5cSiG0O3Xseh9KNY2WONSF74L3SU7-OBsvEYXfbeN9uY05-jj-em9fS2Xq5e39nFZatLwVNa4Fw1RlTEULCNUGUIrLBSj2tQ1MKwo46bmDeE9E4I1PTFKa9XpClQe1Rzh6a4OPsZge7kPbpd_kRjk0VpuZLaWR2s5WWfmbmK-rPJ91M6O2v5yWZtRQgXwYx88b4v_b7e5h-T82PrDmDL6MKE2N_DpbJAn3LhgdZLGuz_e_AEG_oAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On cluster-tilting graphs for hereditary categories</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Fu, Changjian ; Geng, Shengfei</creator><creatorcontrib>Fu, Changjian ; Geng, Shengfei</creatorcontrib><description>Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2021.107670</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>(Cluster)-tilting graph ; (Cluster)-tilting object ; Happel-Unger's conjecture ; Hereditary category ; Mathematics ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Advances in mathematics (New York. 1965), 2021-06, Vol.383, p.107670, Article 107670</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000642480700017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</citedby><cites>FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aim.2021.107670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,39267,46004</link.rule.ids></links><search><creatorcontrib>Fu, Changjian</creatorcontrib><creatorcontrib>Geng, Shengfei</creatorcontrib><title>On cluster-tilting graphs for hereditary categories</title><title>Advances in mathematics (New York. 1965)</title><addtitle>ADV MATH</addtitle><description>Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX.</description><subject>(Cluster)-tilting graph</subject><subject>(Cluster)-tilting object</subject><subject>Happel-Unger's conjecture</subject><subject>Hereditary category</subject><subject>Mathematics</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LAzEQhoMoWKs_wNveZeskm02yeJLFLyj0ouew-dhtSrspSar4703Z4lE8DS_MM8zzInSLYYEBs_vNonO7BQGCc-aMwxmaYWigJCDIOZoBAC4FB3GJrmLc5NhQ3MxQtRoLvT3EZEOZ3Da5cSiG0O3Xseh9KNY2WONSF74L3SU7-OBsvEYXfbeN9uY05-jj-em9fS2Xq5e39nFZatLwVNa4Fw1RlTEULCNUGUIrLBSj2tQ1MKwo46bmDeE9E4I1PTFKa9XpClQe1Rzh6a4OPsZge7kPbpd_kRjk0VpuZLaWR2s5WWfmbmK-rPJ91M6O2v5yWZtRQgXwYx88b4v_b7e5h-T82PrDmDL6MKE2N_DpbJAn3LhgdZLGuz_e_AEG_oAe</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>Fu, Changjian</creator><creator>Geng, Shengfei</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210604</creationdate><title>On cluster-tilting graphs for hereditary categories</title><author>Fu, Changjian ; Geng, Shengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-51f892b3dd40e624bd24318b64cd55061b467d57927f68869f2dbccbac30bcba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>(Cluster)-tilting graph</topic><topic>(Cluster)-tilting object</topic><topic>Happel-Unger's conjecture</topic><topic>Hereditary category</topic><topic>Mathematics</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Changjian</creatorcontrib><creatorcontrib>Geng, Shengfei</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Changjian</au><au>Geng, Shengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On cluster-tilting graphs for hereditary categories</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><stitle>ADV MATH</stitle><date>2021-06-04</date><risdate>2021</risdate><volume>383</volume><spage>107670</spage><pages>107670-</pages><artnum>107670</artnum><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>Let k be an algebraically closed field and H a Hom- and Ext-finite hereditary abelian k-category with tilting objects. It is proved that the cluster-tilting graph associated with H is connected. As a consequence, we establish the connectedness of the tilting graph for the category cohX of coherent sheaves over a weighted projective line X of wild type. The connectedness of tilting graphs for such categories was conjectured by Happel and Unger, which has immediate applications in cluster algebras. For instance, we deduce that there is a bijection between the set of isomorphism classes of indecomposable rigid objects of the cluster category CX of cohX and the set of cluster variables of the cluster algebra AX associated with cohX.</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2021.107670</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2021-06, Vol.383, p.107670, Article 107670
issn 0001-8708
1090-2082
language eng
recordid cdi_webofscience_primary_000642480700017CitationCount
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects (Cluster)-tilting graph
(Cluster)-tilting object
Happel-Unger's conjecture
Hereditary category
Mathematics
Physical Sciences
Science & Technology
title On cluster-tilting graphs for hereditary categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T00%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20cluster-tilting%20graphs%20for%20hereditary%20categories&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Fu,%20Changjian&rft.date=2021-06-04&rft.volume=383&rft.spage=107670&rft.pages=107670-&rft.artnum=107670&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2021.107670&rft_dat=%3Celsevier_webof%3ES0001870821001080%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870821001080&rfr_iscdi=true