Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects

Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-9, Article 5544540
1. Verfasser: Saleem, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Saleem, S.
description Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.
doi_str_mv 10.1155/2021/5544540
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000641615200005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514157360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</originalsourceid><addsrcrecordid>eNqNkF1LIzEUQIdFYf3Yt_0BgX3UWfM97aMOVRcUQSr4NtzJ3GwjNdEkY-m_N6VF38SnXJJzQnKq6jejfxlT6oxTzs6UklJJ-qM6YEqLWjHZ7JWZclkzLh5_VocpPdFCKjY5qOI1QibgB3ILKZF5BJ8sRhIsuQ8ZsgseluRyGVabrQefMsKwJvOFi0N9FWHAcji6gYS3YsFO8v9JGzySlcsLcjGGNXizJjNr0eR0XO1bWCb8tVuPqofL2by9rm_urv615ze1EaLJtex1z7FRVjFjoEfTMEDLLG-k1gqkmIAEOkVjrbRCm4FOcCp7wbQagE9BHFV_tve-xPA6YsrdUxhj-U7qeKnCVCM0LdTpljIxpBTRdi_RPUNcd4x2m6rdpmq3q1rwyRZfYR9sMg69wQ-FUqol00zxMlHVum3BNow-F_Xk--onvXB-gJX7-lnv4L6XoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514157360</pqid></control><display><type>article</type><title>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Saleem, S.</creator><contributor>Agarwal, Praveen ; Praveen Agarwal</contributor><creatorcontrib>Saleem, S. ; Agarwal, Praveen ; Praveen Agarwal</creatorcontrib><description>Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/5544540</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Angular velocity ; Approximation ; Boundary conditions ; Buoyancy ; Coefficient of friction ; Computational fluid dynamics ; Differential equations ; Engineering ; Engineering, Multidisciplinary ; Exact solutions ; Fluid flow ; Heat ; Heat transfer ; Mass transfer ; Mathematics ; Mathematics, Interdisciplinary Applications ; Newtonian fluids ; Non Newtonian fluids ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical Sciences ; Rotating fluids ; Rotation ; Science &amp; Technology ; Similarity solutions ; Skin friction ; Technology ; Time dependence ; Velocity ; Vortices</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-9, Article 5544540</ispartof><rights>Copyright © 2021 S. Saleem.</rights><rights>Copyright © 2021 S. Saleem. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000641615200005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</citedby><cites>FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</cites><orcidid>0000-0001-6217-3626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930,39263</link.rule.ids></links><search><contributor>Agarwal, Praveen</contributor><contributor>Praveen Agarwal</contributor><creatorcontrib>Saleem, S.</creatorcontrib><title>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</title><title>Mathematical problems in engineering</title><addtitle>MATH PROBL ENG</addtitle><description>Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.</description><subject>Angular velocity</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Buoyancy</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Mass transfer</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Rotating fluids</subject><subject>Rotation</subject><subject>Science &amp; Technology</subject><subject>Similarity solutions</subject><subject>Skin friction</subject><subject>Technology</subject><subject>Time dependence</subject><subject>Velocity</subject><subject>Vortices</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkF1LIzEUQIdFYf3Yt_0BgX3UWfM97aMOVRcUQSr4NtzJ3GwjNdEkY-m_N6VF38SnXJJzQnKq6jejfxlT6oxTzs6UklJJ-qM6YEqLWjHZ7JWZclkzLh5_VocpPdFCKjY5qOI1QibgB3ILKZF5BJ8sRhIsuQ8ZsgseluRyGVabrQefMsKwJvOFi0N9FWHAcji6gYS3YsFO8v9JGzySlcsLcjGGNXizJjNr0eR0XO1bWCb8tVuPqofL2by9rm_urv615ze1EaLJtex1z7FRVjFjoEfTMEDLLG-k1gqkmIAEOkVjrbRCm4FOcCp7wbQagE9BHFV_tve-xPA6YsrdUxhj-U7qeKnCVCM0LdTpljIxpBTRdi_RPUNcd4x2m6rdpmq3q1rwyRZfYR9sMg69wQ-FUqol00zxMlHVum3BNow-F_Xk--onvXB-gJX7-lnv4L6XoA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Saleem, S.</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6217-3626</orcidid></search><sort><creationdate>2021</creationdate><title>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</title><author>Saleem, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular velocity</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Buoyancy</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Mass transfer</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Rotating fluids</topic><topic>Rotation</topic><topic>Science &amp; Technology</topic><topic>Similarity solutions</topic><topic>Skin friction</topic><topic>Technology</topic><topic>Time dependence</topic><topic>Velocity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, S.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, S.</au><au>Agarwal, Praveen</au><au>Praveen Agarwal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</atitle><jtitle>Mathematical problems in engineering</jtitle><stitle>MATH PROBL ENG</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>5544540</artnum><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/5544540</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6217-3626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-9, Article 5544540
issn 1024-123X
1563-5147
language eng
recordid cdi_webofscience_primary_000641615200005CitationCount
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Angular velocity
Approximation
Boundary conditions
Buoyancy
Coefficient of friction
Computational fluid dynamics
Differential equations
Engineering
Engineering, Multidisciplinary
Exact solutions
Fluid flow
Heat
Heat transfer
Mass transfer
Mathematics
Mathematics, Interdisciplinary Applications
Newtonian fluids
Non Newtonian fluids
Ordinary differential equations
Parameters
Partial differential equations
Physical Sciences
Rotating fluids
Rotation
Science & Technology
Similarity solutions
Skin friction
Technology
Time dependence
Velocity
Vortices
title Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20and%20Mass%20Transfer%20of%20Rotational%20Flow%20of%20Unsteady%20Third-Grade%20Fluid%20over%20a%20Rotating%20Cone%20with%20Buoyancy%20Effects&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Saleem,%20S.&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=5544540&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/5544540&rft_dat=%3Cproquest_webof%3E2514157360%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514157360&rft_id=info:pmid/&rfr_iscdi=true