Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects
Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021, Vol.2021, p.1-9, Article 5544540 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Saleem, S. |
description | Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces. |
doi_str_mv | 10.1155/2021/5544540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000641615200005CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514157360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</originalsourceid><addsrcrecordid>eNqNkF1LIzEUQIdFYf3Yt_0BgX3UWfM97aMOVRcUQSr4NtzJ3GwjNdEkY-m_N6VF38SnXJJzQnKq6jejfxlT6oxTzs6UklJJ-qM6YEqLWjHZ7JWZclkzLh5_VocpPdFCKjY5qOI1QibgB3ILKZF5BJ8sRhIsuQ8ZsgseluRyGVabrQefMsKwJvOFi0N9FWHAcji6gYS3YsFO8v9JGzySlcsLcjGGNXizJjNr0eR0XO1bWCb8tVuPqofL2by9rm_urv615ze1EaLJtex1z7FRVjFjoEfTMEDLLG-k1gqkmIAEOkVjrbRCm4FOcCp7wbQagE9BHFV_tve-xPA6YsrdUxhj-U7qeKnCVCM0LdTpljIxpBTRdi_RPUNcd4x2m6rdpmq3q1rwyRZfYR9sMg69wQ-FUqol00zxMlHVum3BNow-F_Xk--onvXB-gJX7-lnv4L6XoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514157360</pqid></control><display><type>article</type><title>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Saleem, S.</creator><contributor>Agarwal, Praveen ; Praveen Agarwal</contributor><creatorcontrib>Saleem, S. ; Agarwal, Praveen ; Praveen Agarwal</creatorcontrib><description>Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/5544540</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Angular velocity ; Approximation ; Boundary conditions ; Buoyancy ; Coefficient of friction ; Computational fluid dynamics ; Differential equations ; Engineering ; Engineering, Multidisciplinary ; Exact solutions ; Fluid flow ; Heat ; Heat transfer ; Mass transfer ; Mathematics ; Mathematics, Interdisciplinary Applications ; Newtonian fluids ; Non Newtonian fluids ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical Sciences ; Rotating fluids ; Rotation ; Science & Technology ; Similarity solutions ; Skin friction ; Technology ; Time dependence ; Velocity ; Vortices</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-9, Article 5544540</ispartof><rights>Copyright © 2021 S. Saleem.</rights><rights>Copyright © 2021 S. Saleem. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000641615200005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</citedby><cites>FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</cites><orcidid>0000-0001-6217-3626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930,39263</link.rule.ids></links><search><contributor>Agarwal, Praveen</contributor><contributor>Praveen Agarwal</contributor><creatorcontrib>Saleem, S.</creatorcontrib><title>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</title><title>Mathematical problems in engineering</title><addtitle>MATH PROBL ENG</addtitle><description>Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.</description><subject>Angular velocity</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Buoyancy</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Mass transfer</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Rotating fluids</subject><subject>Rotation</subject><subject>Science & Technology</subject><subject>Similarity solutions</subject><subject>Skin friction</subject><subject>Technology</subject><subject>Time dependence</subject><subject>Velocity</subject><subject>Vortices</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkF1LIzEUQIdFYf3Yt_0BgX3UWfM97aMOVRcUQSr4NtzJ3GwjNdEkY-m_N6VF38SnXJJzQnKq6jejfxlT6oxTzs6UklJJ-qM6YEqLWjHZ7JWZclkzLh5_VocpPdFCKjY5qOI1QibgB3ILKZF5BJ8sRhIsuQ8ZsgseluRyGVabrQefMsKwJvOFi0N9FWHAcji6gYS3YsFO8v9JGzySlcsLcjGGNXizJjNr0eR0XO1bWCb8tVuPqofL2by9rm_urv615ze1EaLJtex1z7FRVjFjoEfTMEDLLG-k1gqkmIAEOkVjrbRCm4FOcCp7wbQagE9BHFV_tve-xPA6YsrdUxhj-U7qeKnCVCM0LdTpljIxpBTRdi_RPUNcd4x2m6rdpmq3q1rwyRZfYR9sMg69wQ-FUqol00zxMlHVum3BNow-F_Xk--onvXB-gJX7-lnv4L6XoA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Saleem, S.</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6217-3626</orcidid></search><sort><creationdate>2021</creationdate><title>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</title><author>Saleem, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4b6b2e75f51ccabec71aef1f274665a438a4a09ecff4f36cd08e94b3165da29a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular velocity</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Buoyancy</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Mass transfer</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Rotating fluids</topic><topic>Rotation</topic><topic>Science & Technology</topic><topic>Similarity solutions</topic><topic>Skin friction</topic><topic>Technology</topic><topic>Time dependence</topic><topic>Velocity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, S.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, S.</au><au>Agarwal, Praveen</au><au>Praveen Agarwal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects</atitle><jtitle>Mathematical problems in engineering</jtitle><stitle>MATH PROBL ENG</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>5544540</artnum><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/5544540</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6217-3626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021, Vol.2021, p.1-9, Article 5544540 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_webofscience_primary_000641615200005CitationCount |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Angular velocity Approximation Boundary conditions Buoyancy Coefficient of friction Computational fluid dynamics Differential equations Engineering Engineering, Multidisciplinary Exact solutions Fluid flow Heat Heat transfer Mass transfer Mathematics Mathematics, Interdisciplinary Applications Newtonian fluids Non Newtonian fluids Ordinary differential equations Parameters Partial differential equations Physical Sciences Rotating fluids Rotation Science & Technology Similarity solutions Skin friction Technology Time dependence Velocity Vortices |
title | Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20and%20Mass%20Transfer%20of%20Rotational%20Flow%20of%20Unsteady%20Third-Grade%20Fluid%20over%20a%20Rotating%20Cone%20with%20Buoyancy%20Effects&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Saleem,%20S.&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=5544540&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/5544540&rft_dat=%3Cproquest_webof%3E2514157360%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514157360&rft_id=info:pmid/&rfr_iscdi=true |