Ground states and multiple solutions for Choquard-Pekar equations with indefinite potential and general nonlinearity

This paper focuses on the study of ground states and multiple solutions for the following non-autonomous Choquard-Pekar equation:{−Δu+V(x)u=(W⁎F(x,u))f(x,u),x∈RN(N≥2),u∈H1(RN), where V∈C(RN,R). We consider first the case V changes sign which turns the problem into a indefinite case, and obtain the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2021-08, Vol.500 (2), p.125143, Article 125143
Hauptverfasser: Qin, Dongdong, Lai, Lizhen, Yuan, Shuai, Wu, Qingfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the study of ground states and multiple solutions for the following non-autonomous Choquard-Pekar equation:{−Δu+V(x)u=(W⁎F(x,u))f(x,u),x∈RN(N≥2),u∈H1(RN), where V∈C(RN,R). We consider first the case V changes sign which turns the problem into a indefinite case, and obtain the existence of nontrivial solution and infinitely many distinct pairs of solutions under a local super-linear condition assumed on the nonlinearity. For the case V is 1-periodic and positive, ground state solution and infinitely many solutions are established further by using the generalized Nehari manifold method. We finally give some non-existence criteria via a generalized Pohožaev identity established for the general potentials V and W.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2021.125143