Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates
Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐perfo...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-06, Vol.31 (25), p.n/a, Article 2010870 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Kim, Seong Won Park, Sangsik Lee, Siyoung Kim, Daegun Lee, Giwon Son, Jonghyun Cho, Kilwon |
description | Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%.
A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state. |
doi_str_mv | 10.1002/adfm.202010870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000640668900001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541894631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYso-Lt1XXApM978NE2XUh0VFAUV3NU0vXUibaJJirjzEXxGn8QOI-NSuYt7F-c793CSZJ_AlADQI9W0_ZQCBQIyh7VkiwgiJgyoXF_d5GEz2Q7hGYDkOeNbyeNt9Bj1XNUdplcY5l8fnzcqRvQWm_TaPylrdHqLvdHONoOOxj6ld3Nj05np-pA6m5YeVRjFp50K0fXoF8BQh-hVxLCbbLSqC7j3s3eS-9npXXk-ubw-uyiPLyeakRwmmrRZUSPhtGlqVGIcxrjMCONatkLmrFZENYrXOc2wKJq24VnNmaBCQk6B7SQHS98X714HDLF6doO348uKZpzIggtGRtV0qdLeheCxrV686ZV_rwhUixarRYvVqsUROFwCb1i7NmiDVuMKAgDBQQhZjBcs7OX_1aWJKhpnSzfYOKLFD2o6fP8jVnV8Mrv6DfkNJ2WYbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541894631</pqid></control><display><type>article</type><title>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Kim, Seong Won ; Park, Sangsik ; Lee, Siyoung ; Kim, Daegun ; Lee, Giwon ; Son, Jonghyun ; Cho, Kilwon</creator><creatorcontrib>Kim, Seong Won ; Park, Sangsik ; Lee, Siyoung ; Kim, Daegun ; Lee, Giwon ; Son, Jonghyun ; Cho, Kilwon</creatorcontrib><description>Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%.
A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202010870</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Carrier mobility ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; crease geometries ; Creasing ; Crystal structure ; Crystallinity ; Elastomers ; field effect transistors ; Materials Science ; Materials Science, Multidisciplinary ; mesh structures ; Morphology ; Nanoscience & Nanotechnology ; Photovoltaic cells ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Polymer films ; Polymers ; Science & Technology ; Science & Technology - Other Topics ; Semiconductor devices ; Stretchability ; stretchable organic semiconductors ; Stretching ; Substrates ; Technology ; thin film patterning ; Thin film transistors ; Thin films</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (25), p.n/a, Article 2010870</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000640668900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</citedby><cites>FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</cites><orcidid>0000-0003-0321-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202010870$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202010870$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,39267,45583,45584</link.rule.ids></links><search><creatorcontrib>Kim, Seong Won</creatorcontrib><creatorcontrib>Park, Sangsik</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Lee, Giwon</creatorcontrib><creatorcontrib>Son, Jonghyun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><title>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%.
A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state.</description><subject>Carrier mobility</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>crease geometries</subject><subject>Creasing</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Elastomers</subject><subject>field effect transistors</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>mesh structures</subject><subject>Morphology</subject><subject>Nanoscience & Nanotechnology</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Stretchability</subject><subject>stretchable organic semiconductors</subject><subject>Stretching</subject><subject>Substrates</subject><subject>Technology</subject><subject>thin film patterning</subject><subject>Thin film transistors</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KxDAUhYso-Lt1XXApM978NE2XUh0VFAUV3NU0vXUibaJJirjzEXxGn8QOI-NSuYt7F-c793CSZJ_AlADQI9W0_ZQCBQIyh7VkiwgiJgyoXF_d5GEz2Q7hGYDkOeNbyeNt9Bj1XNUdplcY5l8fnzcqRvQWm_TaPylrdHqLvdHONoOOxj6ld3Nj05np-pA6m5YeVRjFp50K0fXoF8BQh-hVxLCbbLSqC7j3s3eS-9npXXk-ubw-uyiPLyeakRwmmrRZUSPhtGlqVGIcxrjMCONatkLmrFZENYrXOc2wKJq24VnNmaBCQk6B7SQHS98X714HDLF6doO348uKZpzIggtGRtV0qdLeheCxrV686ZV_rwhUixarRYvVqsUROFwCb1i7NmiDVuMKAgDBQQhZjBcs7OX_1aWJKhpnSzfYOKLFD2o6fP8jVnV8Mrv6DfkNJ2WYbA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kim, Seong Won</creator><creator>Park, Sangsik</creator><creator>Lee, Siyoung</creator><creator>Kim, Daegun</creator><creator>Lee, Giwon</creator><creator>Son, Jonghyun</creator><creator>Cho, Kilwon</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></search><sort><creationdate>20210601</creationdate><title>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</title><author>Kim, Seong Won ; Park, Sangsik ; Lee, Siyoung ; Kim, Daegun ; Lee, Giwon ; Son, Jonghyun ; Cho, Kilwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier mobility</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>crease geometries</topic><topic>Creasing</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Elastomers</topic><topic>field effect transistors</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>mesh structures</topic><topic>Morphology</topic><topic>Nanoscience & Nanotechnology</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Stretchability</topic><topic>stretchable organic semiconductors</topic><topic>Stretching</topic><topic>Substrates</topic><topic>Technology</topic><topic>thin film patterning</topic><topic>Thin film transistors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seong Won</creatorcontrib><creatorcontrib>Park, Sangsik</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Lee, Giwon</creatorcontrib><creatorcontrib>Son, Jonghyun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seong Won</au><au>Park, Sangsik</au><au>Lee, Siyoung</au><au>Kim, Daegun</au><au>Lee, Giwon</au><au>Son, Jonghyun</au><au>Cho, Kilwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>25</issue><epage>n/a</epage><artnum>2010870</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%.
A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202010870</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-06, Vol.31 (25), p.n/a, Article 2010870 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_webofscience_primary_000640668900001 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Carrier mobility Chemistry Chemistry, Multidisciplinary Chemistry, Physical crease geometries Creasing Crystal structure Crystallinity Elastomers field effect transistors Materials Science Materials Science, Multidisciplinary mesh structures Morphology Nanoscience & Nanotechnology Photovoltaic cells Physical Sciences Physics Physics, Applied Physics, Condensed Matter Polymer films Polymers Science & Technology Science & Technology - Other Topics Semiconductor devices Stretchability stretchable organic semiconductors Stretching Substrates Technology thin film patterning Thin film transistors Thin films |
title | Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretchable%20Mesh%E2%80%90Patterned%20Organic%20Semiconducting%20Thin%20Films%20on%20Creased%20Elastomeric%20Substrates&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Seong%20Won&rft.date=2021-06-01&rft.volume=31&rft.issue=25&rft.epage=n/a&rft.artnum=2010870&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202010870&rft_dat=%3Cproquest_webof%3E2541894631%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541894631&rft_id=info:pmid/&rfr_iscdi=true |