Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates

Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-06, Vol.31 (25), p.n/a, Article 2010870
Hauptverfasser: Kim, Seong Won, Park, Sangsik, Lee, Siyoung, Kim, Daegun, Lee, Giwon, Son, Jonghyun, Cho, Kilwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced functional materials
container_volume 31
creator Kim, Seong Won
Park, Sangsik
Lee, Siyoung
Kim, Daegun
Lee, Giwon
Son, Jonghyun
Cho, Kilwon
description Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%. A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state.
doi_str_mv 10.1002/adfm.202010870
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000640668900001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541894631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYso-Lt1XXApM978NE2XUh0VFAUV3NU0vXUibaJJirjzEXxGn8QOI-NSuYt7F-c793CSZJ_AlADQI9W0_ZQCBQIyh7VkiwgiJgyoXF_d5GEz2Q7hGYDkOeNbyeNt9Bj1XNUdplcY5l8fnzcqRvQWm_TaPylrdHqLvdHONoOOxj6ld3Nj05np-pA6m5YeVRjFp50K0fXoF8BQh-hVxLCbbLSqC7j3s3eS-9npXXk-ubw-uyiPLyeakRwmmrRZUSPhtGlqVGIcxrjMCONatkLmrFZENYrXOc2wKJq24VnNmaBCQk6B7SQHS98X714HDLF6doO348uKZpzIggtGRtV0qdLeheCxrV686ZV_rwhUixarRYvVqsUROFwCb1i7NmiDVuMKAgDBQQhZjBcs7OX_1aWJKhpnSzfYOKLFD2o6fP8jVnV8Mrv6DfkNJ2WYbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541894631</pqid></control><display><type>article</type><title>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kim, Seong Won ; Park, Sangsik ; Lee, Siyoung ; Kim, Daegun ; Lee, Giwon ; Son, Jonghyun ; Cho, Kilwon</creator><creatorcontrib>Kim, Seong Won ; Park, Sangsik ; Lee, Siyoung ; Kim, Daegun ; Lee, Giwon ; Son, Jonghyun ; Cho, Kilwon</creatorcontrib><description>Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%. A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202010870</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Carrier mobility ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; crease geometries ; Creasing ; Crystal structure ; Crystallinity ; Elastomers ; field effect transistors ; Materials Science ; Materials Science, Multidisciplinary ; mesh structures ; Morphology ; Nanoscience &amp; Nanotechnology ; Photovoltaic cells ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Polymer films ; Polymers ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Semiconductor devices ; Stretchability ; stretchable organic semiconductors ; Stretching ; Substrates ; Technology ; thin film patterning ; Thin film transistors ; Thin films</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (25), p.n/a, Article 2010870</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000640668900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</citedby><cites>FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</cites><orcidid>0000-0003-0321-3629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202010870$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202010870$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,39267,45583,45584</link.rule.ids></links><search><creatorcontrib>Kim, Seong Won</creatorcontrib><creatorcontrib>Park, Sangsik</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Lee, Giwon</creatorcontrib><creatorcontrib>Son, Jonghyun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><title>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%. A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state.</description><subject>Carrier mobility</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>crease geometries</subject><subject>Creasing</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Elastomers</subject><subject>field effect transistors</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>mesh structures</subject><subject>Morphology</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Stretchability</subject><subject>stretchable organic semiconductors</subject><subject>Stretching</subject><subject>Substrates</subject><subject>Technology</subject><subject>thin film patterning</subject><subject>Thin film transistors</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KxDAUhYso-Lt1XXApM978NE2XUh0VFAUV3NU0vXUibaJJirjzEXxGn8QOI-NSuYt7F-c793CSZJ_AlADQI9W0_ZQCBQIyh7VkiwgiJgyoXF_d5GEz2Q7hGYDkOeNbyeNt9Bj1XNUdplcY5l8fnzcqRvQWm_TaPylrdHqLvdHONoOOxj6ld3Nj05np-pA6m5YeVRjFp50K0fXoF8BQh-hVxLCbbLSqC7j3s3eS-9npXXk-ubw-uyiPLyeakRwmmrRZUSPhtGlqVGIcxrjMCONatkLmrFZENYrXOc2wKJq24VnNmaBCQk6B7SQHS98X714HDLF6doO348uKZpzIggtGRtV0qdLeheCxrV686ZV_rwhUixarRYvVqsUROFwCb1i7NmiDVuMKAgDBQQhZjBcs7OX_1aWJKhpnSzfYOKLFD2o6fP8jVnV8Mrv6DfkNJ2WYbA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kim, Seong Won</creator><creator>Park, Sangsik</creator><creator>Lee, Siyoung</creator><creator>Kim, Daegun</creator><creator>Lee, Giwon</creator><creator>Son, Jonghyun</creator><creator>Cho, Kilwon</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></search><sort><creationdate>20210601</creationdate><title>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</title><author>Kim, Seong Won ; Park, Sangsik ; Lee, Siyoung ; Kim, Daegun ; Lee, Giwon ; Son, Jonghyun ; Cho, Kilwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-c1f59be142ddbea6a6a33485134c8f6873ba1ada4b725e99dfd45b43626807203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier mobility</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>crease geometries</topic><topic>Creasing</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Elastomers</topic><topic>field effect transistors</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>mesh structures</topic><topic>Morphology</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Stretchability</topic><topic>stretchable organic semiconductors</topic><topic>Stretching</topic><topic>Substrates</topic><topic>Technology</topic><topic>thin film patterning</topic><topic>Thin film transistors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seong Won</creatorcontrib><creatorcontrib>Park, Sangsik</creatorcontrib><creatorcontrib>Lee, Siyoung</creatorcontrib><creatorcontrib>Kim, Daegun</creatorcontrib><creatorcontrib>Lee, Giwon</creatorcontrib><creatorcontrib>Son, Jonghyun</creatorcontrib><creatorcontrib>Cho, Kilwon</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seong Won</au><au>Park, Sangsik</au><au>Lee, Siyoung</au><au>Kim, Daegun</au><au>Lee, Giwon</au><au>Son, Jonghyun</au><au>Cho, Kilwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>25</issue><epage>n/a</epage><artnum>2010870</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Recently, many researchers have tried to develop stretchable semiconducting thin films that can maintain their electrical performance under stretching. However, the fabrication processes have not been sufficiently practical and feasible to be used for soft electronics. Here, a stretchable high‐performance organic semiconducting thin film is fabricated by exploiting simultaneous patterning and pinning of a polymer semiconductor solution on an elastomeric substrate in which creasing‐instability has occurred. As a result, a mesh‐like polymer semiconducting thin film having vacant regions in the crease centers and surrounding crystalline regions near them can be fabricated. Due to the mesh‐like morphology and the percolated crystalline regions, the polymer semiconducting thin film shows superior stretchability and charge‐transport performance compared to the reference flat polymer thin film. When incorporated into organic thin‐film transistors, the DPP‐DTT polymer semiconducting thin film maintains its high field‐effect carrier mobility (0.53 ± 0.03 cm2 (V s)−1) under a strain ε of 80% and is highly stable under repeated stretching cycles at an ε of 50%. A highly stretchable organic semiconducting thin film with a mesh structure is fabricated on an elastomeric substrate by exploiting the sealed‐off region formed while creasing instability has occurred. The mesh structure efficiently reduces the applied stress and the semiconducting thin film well maintains its high field‐effect mobility in a stretched state.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202010870</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0321-3629</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-06, Vol.31 (25), p.n/a, Article 2010870
issn 1616-301X
1616-3028
language eng
recordid cdi_webofscience_primary_000640668900001
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Carrier mobility
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
crease geometries
Creasing
Crystal structure
Crystallinity
Elastomers
field effect transistors
Materials Science
Materials Science, Multidisciplinary
mesh structures
Morphology
Nanoscience & Nanotechnology
Photovoltaic cells
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Polymer films
Polymers
Science & Technology
Science & Technology - Other Topics
Semiconductor devices
Stretchability
stretchable organic semiconductors
Stretching
Substrates
Technology
thin film patterning
Thin film transistors
Thin films
title Stretchable Mesh‐Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretchable%20Mesh%E2%80%90Patterned%20Organic%20Semiconducting%20Thin%20Films%20on%20Creased%20Elastomeric%20Substrates&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Seong%20Won&rft.date=2021-06-01&rft.volume=31&rft.issue=25&rft.epage=n/a&rft.artnum=2010870&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202010870&rft_dat=%3Cproquest_webof%3E2541894631%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541894631&rft_id=info:pmid/&rfr_iscdi=true