Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis

Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2021-05, Vol.105 (9), p.3691-3704
Hauptverfasser: Chen, Chen, Huang, Ke, Li, Xiaohong, Tian, Huaixiang, Yu, Haiyan, Huang, Juan, Yuan, Haibin, Zhao, Shanshan, Shao, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3704
container_issue 9
container_start_page 3691
container_title Applied microbiology and biotechnology
container_volume 105
creator Chen, Chen
Huang, Ke
Li, Xiaohong
Tian, Huaixiang
Yu, Haiyan
Huang, Juan
Yuan, Haibin
Zhao, Shanshan
Shao, Li
description Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA -knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. Key points • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress. Graphical abstract
doi_str_mv 10.1007/s00253-021-11276-0
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000640154800001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661043430</galeid><sourcerecordid>A661043430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-38e4ca53021e5d8125484df3df96d7d012036ae8d2aad4eda97ea9691b4175973</originalsourceid><addsrcrecordid>eNqNkltrVDEQxw-i2G31C_ggAV8scuokOdfHZalaWBC8PIfZnDlLyrmZyandb2-2W1tWRCQhN37_Yf6TSZJXEi4kQPmeAVSuU1AylVKVRQpPkoXMtEqhkNnTZAGyzNMyr6uT5JT5GkCqqiieJydaV7kClS2S28u2JRtYjK1Y2WkpcItu4CAYu7gET8zCDWKNNripwyG4DVrXdTOLuyv6uRfIcXJEqRGbnbBjP6HH4G5IBI8DW--m4MYBO4Fx2bHjF8mzFjuml_f7WfL9w-W31ad0_fnj1Wq5Tm0udUh1RZnFXEeTlDeVVHlWZU2rm7YumrKJjkAXSFWjEJuMGqxLwrqo5SaL5utSnyVvD3EnP_6YiYPpHVvqYu40zmxUHkuntaqriL75A70eZx_z3VNK5QB5VT9SW-zIuKEdo0W7D2qWRSEh05mGSF38hYqjod7ZcaDWxfcjwfmRIDKBbsMWZ2Zz9fXLMasOrPUjs6fWTN716HdGgtm3hjm0holVM3etYfai1_fu5k1PzYPkdy9E4N0B-EmbsWXraLD0gAFAkYGM5Y8nkJGu_p9euYD7_1-N8xCiVB-kHPFhS_6xzv_I_xctXOMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522500589</pqid></control><display><type>article</type><title>Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis</title><source>SpringerNature Journals</source><creator>Chen, Chen ; Huang, Ke ; Li, Xiaohong ; Tian, Huaixiang ; Yu, Haiyan ; Huang, Juan ; Yuan, Haibin ; Zhao, Shanshan ; Shao, Li</creator><creatorcontrib>Chen, Chen ; Huang, Ke ; Li, Xiaohong ; Tian, Huaixiang ; Yu, Haiyan ; Huang, Juan ; Yuan, Haibin ; Zhao, Shanshan ; Shao, Li</creatorcontrib><description>Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA -knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. Key points • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress. Graphical abstract</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11276-0</identifier><identifier>PMID: 33852024</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abiotic stress ; Bacteria ; Biomedical and Life Sciences ; Biotechnology ; Biotechnology &amp; Applied Microbiology ; Composition ; DNA binding proteins ; Fatty acid composition ; Fatty acids ; Gene expression ; Genes ; Genetic aspects ; Genomics ; Glycine ; Glycine betaine ; Homeostasis ; Industrial applications ; Lactic acid ; Lactic acid bacteria ; Lactobacillus plantarum ; Life Sciences ; Life Sciences &amp; Biomedicine ; Lipids ; Membranes ; Microbial Genetics and Genomics ; Microbiology ; Mutants ; Osmosis ; Physiological aspects ; Proteomics ; Salinity tolerance ; Salts ; Science &amp; Technology ; Sodium chloride ; Solutes ; Stress (Physiology) ; Transcription ; Transcriptomes ; Transcriptomics ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2021-05, Vol.105 (9), p.3691-3704</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000640154800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c513t-38e4ca53021e5d8125484df3df96d7d012036ae8d2aad4eda97ea9691b4175973</citedby><cites>FETCH-LOGICAL-c513t-38e4ca53021e5d8125484df3df96d7d012036ae8d2aad4eda97ea9691b4175973</cites><orcidid>0000-0001-8255-4362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-021-11276-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-021-11276-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33852024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Huang, Ke</creatorcontrib><creatorcontrib>Li, Xiaohong</creatorcontrib><creatorcontrib>Tian, Huaixiang</creatorcontrib><creatorcontrib>Yu, Haiyan</creatorcontrib><creatorcontrib>Huang, Juan</creatorcontrib><creatorcontrib>Yuan, Haibin</creatorcontrib><creatorcontrib>Zhao, Shanshan</creatorcontrib><creatorcontrib>Shao, Li</creatorcontrib><title>Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>APPL MICROBIOL BIOT</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA -knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. Key points • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress. Graphical abstract</description><subject>Abiotic stress</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>Composition</subject><subject>DNA binding proteins</subject><subject>Fatty acid composition</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glycine</subject><subject>Glycine betaine</subject><subject>Homeostasis</subject><subject>Industrial applications</subject><subject>Lactic acid</subject><subject>Lactic acid bacteria</subject><subject>Lactobacillus plantarum</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutants</subject><subject>Osmosis</subject><subject>Physiological aspects</subject><subject>Proteomics</subject><subject>Salinity tolerance</subject><subject>Salts</subject><subject>Science &amp; Technology</subject><subject>Sodium chloride</subject><subject>Solutes</subject><subject>Stress (Physiology)</subject><subject>Transcription</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkltrVDEQxw-i2G31C_ggAV8scuokOdfHZalaWBC8PIfZnDlLyrmZyandb2-2W1tWRCQhN37_Yf6TSZJXEi4kQPmeAVSuU1AylVKVRQpPkoXMtEqhkNnTZAGyzNMyr6uT5JT5GkCqqiieJydaV7kClS2S28u2JRtYjK1Y2WkpcItu4CAYu7gET8zCDWKNNripwyG4DVrXdTOLuyv6uRfIcXJEqRGbnbBjP6HH4G5IBI8DW--m4MYBO4Fx2bHjF8mzFjuml_f7WfL9w-W31ad0_fnj1Wq5Tm0udUh1RZnFXEeTlDeVVHlWZU2rm7YumrKJjkAXSFWjEJuMGqxLwrqo5SaL5utSnyVvD3EnP_6YiYPpHVvqYu40zmxUHkuntaqriL75A70eZx_z3VNK5QB5VT9SW-zIuKEdo0W7D2qWRSEh05mGSF38hYqjod7ZcaDWxfcjwfmRIDKBbsMWZ2Zz9fXLMasOrPUjs6fWTN716HdGgtm3hjm0holVM3etYfai1_fu5k1PzYPkdy9E4N0B-EmbsWXraLD0gAFAkYGM5Y8nkJGu_p9euYD7_1-N8xCiVB-kHPFhS_6xzv_I_xctXOMI</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Chen, Chen</creator><creator>Huang, Ke</creator><creator>Li, Xiaohong</creator><creator>Tian, Huaixiang</creator><creator>Yu, Haiyan</creator><creator>Huang, Juan</creator><creator>Yuan, Haibin</creator><creator>Zhao, Shanshan</creator><creator>Shao, Li</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8255-4362</orcidid></search><sort><creationdate>20210501</creationdate><title>Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis</title><author>Chen, Chen ; Huang, Ke ; Li, Xiaohong ; Tian, Huaixiang ; Yu, Haiyan ; Huang, Juan ; Yuan, Haibin ; Zhao, Shanshan ; Shao, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-38e4ca53021e5d8125484df3df96d7d012036ae8d2aad4eda97ea9691b4175973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>Composition</topic><topic>DNA binding proteins</topic><topic>Fatty acid composition</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glycine</topic><topic>Glycine betaine</topic><topic>Homeostasis</topic><topic>Industrial applications</topic><topic>Lactic acid</topic><topic>Lactic acid bacteria</topic><topic>Lactobacillus plantarum</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutants</topic><topic>Osmosis</topic><topic>Physiological aspects</topic><topic>Proteomics</topic><topic>Salinity tolerance</topic><topic>Salts</topic><topic>Science &amp; Technology</topic><topic>Sodium chloride</topic><topic>Solutes</topic><topic>Stress (Physiology)</topic><topic>Transcription</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Huang, Ke</creatorcontrib><creatorcontrib>Li, Xiaohong</creatorcontrib><creatorcontrib>Tian, Huaixiang</creatorcontrib><creatorcontrib>Yu, Haiyan</creatorcontrib><creatorcontrib>Huang, Juan</creatorcontrib><creatorcontrib>Yuan, Haibin</creatorcontrib><creatorcontrib>Zhao, Shanshan</creatorcontrib><creatorcontrib>Shao, Li</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chen</au><au>Huang, Ke</au><au>Li, Xiaohong</au><au>Tian, Huaixiang</au><au>Yu, Haiyan</au><au>Huang, Juan</au><au>Yuan, Haibin</au><au>Zhao, Shanshan</au><au>Shao, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><stitle>APPL MICROBIOL BIOT</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>105</volume><issue>9</issue><spage>3691</spage><epage>3704</epage><pages>3691-3704</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA -knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. Key points • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33852024</pmid><doi>10.1007/s00253-021-11276-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8255-4362</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2021-05, Vol.105 (9), p.3691-3704
issn 0175-7598
1432-0614
language eng
recordid cdi_webofscience_primary_000640154800001
source SpringerNature Journals
subjects Abiotic stress
Bacteria
Biomedical and Life Sciences
Biotechnology
Biotechnology & Applied Microbiology
Composition
DNA binding proteins
Fatty acid composition
Fatty acids
Gene expression
Genes
Genetic aspects
Genomics
Glycine
Glycine betaine
Homeostasis
Industrial applications
Lactic acid
Lactic acid bacteria
Lactobacillus plantarum
Life Sciences
Life Sciences & Biomedicine
Lipids
Membranes
Microbial Genetics and Genomics
Microbiology
Mutants
Osmosis
Physiological aspects
Proteomics
Salinity tolerance
Salts
Science & Technology
Sodium chloride
Solutes
Stress (Physiology)
Transcription
Transcriptomes
Transcriptomics
Yeast
title Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20CcpA%20against%20salt%20stress%20in%20Lactiplantibacillus%20plantarum%20as%20assessed%20by%20comparative%20transcriptional%20analysis&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Chen,%20Chen&rft.date=2021-05-01&rft.volume=105&rft.issue=9&rft.spage=3691&rft.epage=3704&rft.pages=3691-3704&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11276-0&rft_dat=%3Cgale_webof%3EA661043430%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522500589&rft_id=info:pmid/33852024&rft_galeid=A661043430&rfr_iscdi=true