Second Law of Thermodynamics, Gibbs’ Thermodynamics, and Relaxation Times of Thermodynamic Parameters

The relationship between the second law of thermodynamics and Gibbs’ thermodynamics is discussed. The second law of thermodynamics is formulated more generally than Gibbs’ thermodynamics, which considers only strictly equilibrium values of thermodynamic functions. Gibbs’ approach generalizes the sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021-04, Vol.95 (4), p.637-658
1. Verfasser: Tovbin, Yu. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 658
container_issue 4
container_start_page 637
container_title RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
container_volume 95
creator Tovbin, Yu. K.
description The relationship between the second law of thermodynamics and Gibbs’ thermodynamics is discussed. The second law of thermodynamics is formulated more generally than Gibbs’ thermodynamics, which considers only strictly equilibrium values of thermodynamic functions. Gibbs’ approach generalizes the statistical mechanical theory of equilibrium for thermodynamic variables, except for the difference between the periods of relaxation of all thermodynamic parameters. For small systems, this approach consists of replacing the real physical nature of systems with the stratification of coexisting phases using a model with an interface of mobile phases in contact with a foreign (nonequilibrium) body. For solids, this results in confusion of concepts of the complete phase equilibrium of a system and the mechanical equilibrium of a deformed solid. These two problems are revealed using the molecular kinetic theory of condensed phases, ensuring a self-consistent description of three aggregate states and their interfaces. This theory allows the concepts of the times of the onset and completion of forming entropy in the considered system to be introduced. Allowing for experimental data on the ratios between the measured periods of relaxation for momentum, energy, and mass transfer processes in considering real processes not only ensures a solution to the two problems noted above; it also testifies to the redundancy of the Carathéodory mathematical theory to substantiate the introduction of entropy into multicomponent mixtures. A microscopic interpretation of the formation of entropy in closed systems is given that illustrates the essence of processes preceding the emergence of the reaction completeness parameter in de Donder and Prigogine approaches. Systems in which allowing for periods of relaxation alters existing theories are discussed.
doi_str_mv 10.1134/S0036024421020266
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000639852500001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512391967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-55d3b4967b71bc7ff323833d8b5ea11774150bd9527fab14b9dbe15a11daebc33</originalsourceid><addsrcrecordid>eNqNkM1Kw0AUhQdRsFYfwF3ApUbnzk9-llK0CgXFVnAXZpKbmtJk6kxK7c7X8PV8EqdGdFEEV3fgnO_cO4eQY6DnAFxcjCnlEWVCMKCMsijaIT2QHMIk4k-7pLeRw42-Tw6cm1EqhADRI9Mx5qYpgpFaBaYMJs9oa1OsG1VXuTsLhpXW7uPtfUtQnnnAuXpVbWWaYFLV6LYCgntlVY0tWndI9ko1d3j0Pfvk8fpqMrgJR3fD28HlKMw5RG0oZcG1SKNYx6DzuCw54wnnRaIlKoA4FiCpLlLJ4lJpEDotNIL0UqFQ55z3yUmXu7DmZYmuzWZmaRu_MmMSGE_Bh3sXdK7cGucsltnCVrWy6wxotukz2-rTM0nHrFCb0uUVNjn-cJTSiKeJZNK_KAyq9quYgVk2rUdP_496N-vczjuaKdrfL_x93SeyK5j3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512391967</pqid></control><display><type>article</type><title>Second Law of Thermodynamics, Gibbs’ Thermodynamics, and Relaxation Times of Thermodynamic Parameters</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Tovbin, Yu. K.</creator><creatorcontrib>Tovbin, Yu. K.</creatorcontrib><description>The relationship between the second law of thermodynamics and Gibbs’ thermodynamics is discussed. The second law of thermodynamics is formulated more generally than Gibbs’ thermodynamics, which considers only strictly equilibrium values of thermodynamic functions. Gibbs’ approach generalizes the statistical mechanical theory of equilibrium for thermodynamic variables, except for the difference between the periods of relaxation of all thermodynamic parameters. For small systems, this approach consists of replacing the real physical nature of systems with the stratification of coexisting phases using a model with an interface of mobile phases in contact with a foreign (nonequilibrium) body. For solids, this results in confusion of concepts of the complete phase equilibrium of a system and the mechanical equilibrium of a deformed solid. These two problems are revealed using the molecular kinetic theory of condensed phases, ensuring a self-consistent description of three aggregate states and their interfaces. This theory allows the concepts of the times of the onset and completion of forming entropy in the considered system to be introduced. Allowing for experimental data on the ratios between the measured periods of relaxation for momentum, energy, and mass transfer processes in considering real processes not only ensures a solution to the two problems noted above; it also testifies to the redundancy of the Carathéodory mathematical theory to substantiate the introduction of entropy into multicomponent mixtures. A microscopic interpretation of the formation of entropy in closed systems is given that illustrates the essence of processes preceding the emergence of the reaction completeness parameter in de Donder and Prigogine approaches. Systems in which allowing for periods of relaxation alters existing theories are discussed.</description><identifier>ISSN: 0036-0244</identifier><identifier>EISSN: 1531-863X</identifier><identifier>DOI: 10.1134/S0036024421020266</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Challenges in Physical Chemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry, Physical ; Development Trends ; Entropy ; Entropy of formation ; Equilibrium ; Kinetic theory ; Mass transfer ; Parameters ; Phase equilibria ; Phases ; Physical Chemistry ; Physical Sciences ; Problems ; Redundancy ; Science &amp; Technology ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2021-04, Vol.95 (4), p.637-658</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2021, Vol. 95, No. 4, pp. 637–658. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Fizicheskoi Khimii, 2021, Vol. 95, No. 4, pp. 483–507.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000639852500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c316t-55d3b4967b71bc7ff323833d8b5ea11774150bd9527fab14b9dbe15a11daebc33</citedby><cites>FETCH-LOGICAL-c316t-55d3b4967b71bc7ff323833d8b5ea11774150bd9527fab14b9dbe15a11daebc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0036024421020266$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0036024421020266$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,39263,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Tovbin, Yu. K.</creatorcontrib><title>Second Law of Thermodynamics, Gibbs’ Thermodynamics, and Relaxation Times of Thermodynamic Parameters</title><title>RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A</title><addtitle>Russ. J. Phys. Chem</addtitle><addtitle>RUSS J PHYS CHEM A+</addtitle><description>The relationship between the second law of thermodynamics and Gibbs’ thermodynamics is discussed. The second law of thermodynamics is formulated more generally than Gibbs’ thermodynamics, which considers only strictly equilibrium values of thermodynamic functions. Gibbs’ approach generalizes the statistical mechanical theory of equilibrium for thermodynamic variables, except for the difference between the periods of relaxation of all thermodynamic parameters. For small systems, this approach consists of replacing the real physical nature of systems with the stratification of coexisting phases using a model with an interface of mobile phases in contact with a foreign (nonequilibrium) body. For solids, this results in confusion of concepts of the complete phase equilibrium of a system and the mechanical equilibrium of a deformed solid. These two problems are revealed using the molecular kinetic theory of condensed phases, ensuring a self-consistent description of three aggregate states and their interfaces. This theory allows the concepts of the times of the onset and completion of forming entropy in the considered system to be introduced. Allowing for experimental data on the ratios between the measured periods of relaxation for momentum, energy, and mass transfer processes in considering real processes not only ensures a solution to the two problems noted above; it also testifies to the redundancy of the Carathéodory mathematical theory to substantiate the introduction of entropy into multicomponent mixtures. A microscopic interpretation of the formation of entropy in closed systems is given that illustrates the essence of processes preceding the emergence of the reaction completeness parameter in de Donder and Prigogine approaches. Systems in which allowing for periods of relaxation alters existing theories are discussed.</description><subject>Challenges in Physical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Physical</subject><subject>Development Trends</subject><subject>Entropy</subject><subject>Entropy of formation</subject><subject>Equilibrium</subject><subject>Kinetic theory</subject><subject>Mass transfer</subject><subject>Parameters</subject><subject>Phase equilibria</subject><subject>Phases</subject><subject>Physical Chemistry</subject><subject>Physical Sciences</subject><subject>Problems</subject><subject>Redundancy</subject><subject>Science &amp; Technology</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>0036-0244</issn><issn>1531-863X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1Kw0AUhQdRsFYfwF3ApUbnzk9-llK0CgXFVnAXZpKbmtJk6kxK7c7X8PV8EqdGdFEEV3fgnO_cO4eQY6DnAFxcjCnlEWVCMKCMsijaIT2QHMIk4k-7pLeRw42-Tw6cm1EqhADRI9Mx5qYpgpFaBaYMJs9oa1OsG1VXuTsLhpXW7uPtfUtQnnnAuXpVbWWaYFLV6LYCgntlVY0tWndI9ko1d3j0Pfvk8fpqMrgJR3fD28HlKMw5RG0oZcG1SKNYx6DzuCw54wnnRaIlKoA4FiCpLlLJ4lJpEDotNIL0UqFQ55z3yUmXu7DmZYmuzWZmaRu_MmMSGE_Bh3sXdK7cGucsltnCVrWy6wxotukz2-rTM0nHrFCb0uUVNjn-cJTSiKeJZNK_KAyq9quYgVk2rUdP_496N-vczjuaKdrfL_x93SeyK5j3</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Tovbin, Yu. K.</creator><general>Pleiades Publishing</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Second Law of Thermodynamics, Gibbs’ Thermodynamics, and Relaxation Times of Thermodynamic Parameters</title><author>Tovbin, Yu. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-55d3b4967b71bc7ff323833d8b5ea11774150bd9527fab14b9dbe15a11daebc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Challenges in Physical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Physical</topic><topic>Development Trends</topic><topic>Entropy</topic><topic>Entropy of formation</topic><topic>Equilibrium</topic><topic>Kinetic theory</topic><topic>Mass transfer</topic><topic>Parameters</topic><topic>Phase equilibria</topic><topic>Phases</topic><topic>Physical Chemistry</topic><topic>Physical Sciences</topic><topic>Problems</topic><topic>Redundancy</topic><topic>Science &amp; Technology</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tovbin, Yu. K.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tovbin, Yu. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second Law of Thermodynamics, Gibbs’ Thermodynamics, and Relaxation Times of Thermodynamic Parameters</atitle><jtitle>RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A</jtitle><stitle>Russ. J. Phys. Chem</stitle><stitle>RUSS J PHYS CHEM A+</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>95</volume><issue>4</issue><spage>637</spage><epage>658</epage><pages>637-658</pages><issn>0036-0244</issn><eissn>1531-863X</eissn><abstract>The relationship between the second law of thermodynamics and Gibbs’ thermodynamics is discussed. The second law of thermodynamics is formulated more generally than Gibbs’ thermodynamics, which considers only strictly equilibrium values of thermodynamic functions. Gibbs’ approach generalizes the statistical mechanical theory of equilibrium for thermodynamic variables, except for the difference between the periods of relaxation of all thermodynamic parameters. For small systems, this approach consists of replacing the real physical nature of systems with the stratification of coexisting phases using a model with an interface of mobile phases in contact with a foreign (nonequilibrium) body. For solids, this results in confusion of concepts of the complete phase equilibrium of a system and the mechanical equilibrium of a deformed solid. These two problems are revealed using the molecular kinetic theory of condensed phases, ensuring a self-consistent description of three aggregate states and their interfaces. This theory allows the concepts of the times of the onset and completion of forming entropy in the considered system to be introduced. Allowing for experimental data on the ratios between the measured periods of relaxation for momentum, energy, and mass transfer processes in considering real processes not only ensures a solution to the two problems noted above; it also testifies to the redundancy of the Carathéodory mathematical theory to substantiate the introduction of entropy into multicomponent mixtures. A microscopic interpretation of the formation of entropy in closed systems is given that illustrates the essence of processes preceding the emergence of the reaction completeness parameter in de Donder and Prigogine approaches. Systems in which allowing for periods of relaxation alters existing theories are discussed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0036024421020266</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0244
ispartof RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2021-04, Vol.95 (4), p.637-658
issn 0036-0244
1531-863X
language eng
recordid cdi_webofscience_primary_000639852500001CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Challenges in Physical Chemistry
Chemistry
Chemistry and Materials Science
Chemistry, Physical
Development Trends
Entropy
Entropy of formation
Equilibrium
Kinetic theory
Mass transfer
Parameters
Phase equilibria
Phases
Physical Chemistry
Physical Sciences
Problems
Redundancy
Science & Technology
Thermodynamic equilibrium
Thermodynamics
title Second Law of Thermodynamics, Gibbs’ Thermodynamics, and Relaxation Times of Thermodynamic Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second%20Law%20of%20Thermodynamics,%20Gibbs%E2%80%99%20Thermodynamics,%20and%20Relaxation%20Times%20of%20Thermodynamic%20Parameters&rft.jtitle=RUSSIAN%20JOURNAL%20OF%20PHYSICAL%20CHEMISTRY%20A&rft.au=Tovbin,%20Yu.%20K.&rft.date=2021-04-01&rft.volume=95&rft.issue=4&rft.spage=637&rft.epage=658&rft.pages=637-658&rft.issn=0036-0244&rft.eissn=1531-863X&rft_id=info:doi/10.1134/S0036024421020266&rft_dat=%3Cproquest_webof%3E2512391967%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512391967&rft_id=info:pmid/&rfr_iscdi=true